Installation
This page explains the basics to get started. But before actually installing, it can also help to skim through the Frequenty Asked Questions (FAQ).
If something isn't correct (anymore), or still incomplete, you will have to try figuring it out, or ask for the correct solution in the community.
And then carefully edit the wiki page.
Just as those before you did it, for you.
Minimal Hardware Requirements
- At least 100 MB of RAM. [A graphical desktop system may require up to 1 GB minimum.]
- At least 0-700 MB space on a writable storage device. [Only required in "sys" or "data" mode installations (explained below). It is optional in "diskless" mode, only needed to save newer data and configurations states of a running system.]
Installation Overview
The general course of actions
[Note: For single-board-computer (SBC) architectures which can not boot .iso images, see e.g. Alpine on ARM for peculiarities.]
As usual, the regular installation procedure starts with three basic steps (additional details for all the steps follow below):
1.) Downloading and verifying the proper stable-release ISO installation image-file for the computer's architecture, and the corresponding sha256
(checksum) and GPG
(signature) files.
2.) Either burning the ISO image-file onto a blank CD/DVD/Blu-ray disk with a disk burning software, or flashing the installation image onto a bootable storage device (USB-device, CF-/MMC-/SD-card, floppy, ...).
3.) Booting the computer from the prepared disk or storage device.
The boot process then copies the entire operating system into the RAM memory, and then runs it from there, so that the started command line environment does not depend on reading from the (possibly slow) initial boot media anymore.
Log-in is possible as the user root
with its initially empty password.
Then an interactive script named setup-alpine
is available at the command prompt, to configure and install the initial Alpine Linux system.
The setup-alpine
question-and-answer dialog can configure installations that boot into one of three different Alpinelinux disk modes, "diskless", "data", and "sys". These are explained in more detail in the next subsections, but in the overview here it should already be said, that the initially booted installation system may always be configured into a fully usable, standalone, "diskless" live-system, by doing a run of setup-alpine
and answering "none" when asked for the disk to use, where to store configs, and the location for the package cache.
Once a "diskless" system is configured by a run of setup-alpine
, it's possible to use the apk package manager to install any desired tool that may be missing in the live system to configure available hardware.
Specific hardware configuration may be desired, for example, for available disk drives. It's needed to install with a customized partitioning or filesystem scheme, and if the installation should not simply use and overwrite a whole disk (details below).
After the desired adjustments have been done using the "diskless" system, setup-lbu
and setup-apkcache
may be run to add a persistent configuration storage and a package cache storage to the running "diskless" system. After that, the system's state may be saved with lbu commit
. Or, setup-disk
may be run to add a "data" mode partition, or do a classic full install of the "diskless" system onto a "sys" disk or partition.
More setup-scripts are available to configure other specifics. They may be run separately to set up a system, or, to adjust only certain parts later. For example, to set up a graphical environment (covered in Post-Install below).
Diskless Mode
This is the default boot mode of the .iso images, and setup-alpine
configures this if selecting to install to "disk=none". It means that the whole operating system and all applications are loaded into, and then run from, RAM memory. This is extremely fast and can save on unnecessary disk spin-ups, power, and wear. There are similarities to what is called a "frugal" installation running with "toram" option with other distros, but without their remastering needs.
Customized configurations and package selections may still be preserved across reboots with the Alpine local backup tool lbu
. It allows to commit and revert system states using .apkovl files that are saved to writable storage and loaded when booting. If additional or updated packages have been added to the system, these may also be made available for automatic (re)installation during the boot phase, by enabling a local package cache on the writable storage.
[FIXME-1: Storing local configs and the package cache on an internal disk still requires some manual steps to have the partition listed, i.e. making a /etc/fstab entry, mountpoint, and mount, *before* running setup-alpine. And requires to manually commit this configuration to disk afterwards.]
To allow for the local backups, setup-alpine
can configure to store the configs and the package cache on a writable partition. (Later, directories on that same partition or another available partition may also be mounted as /home, or just for some important applications, to keep their run-time and user data on it.)
The boot device of the newly configured local "diskless" system may remain the initial (and possibly read-only) installation media. But it is also possible to copy the boot system to a partition (e.g. /dev/sdXY) with setup-bootable
.
Data Disk Mode
This mode is still accelerated by running the system from RAM, however swap storage and the whole /var directory tree gets mounted from a persistent storage device (two newly created partitions). The directory /var holds e.g. all log files, mailspools, databases, etc., as well as lbu
backup commits and the package cache. The mode is useful for having RAM accelerated servers with amounts of variable user-data that exceed the available RAM size, and to let the entire current system state (not just the boot state) survive a system crash according to the particular filesystem's guarantees.
[FIXME-2: Setup-alpine can not yet configure to store lbu configs to the "data disk" after selecting to use one. It's still necessary to first select to save configs to "none" in setup-alpine (the new data partition is not listed), and to manually edit /etc/lbu/lbu.conf to set e.g. LBU_MEDIA=sdXY, execute a corresponding echo "/dev/sdXY /media/sdXY vfat rw 0 0" >> /etc/fstab
afterwards, and save the config with lbu commit
to have the partition (here, dubbed as sdXY) mounted when booting.]
In data disk mode, the boot device may also remain the initial (and possibly read-only) installation media, or be copied over to a partition (e.g. /dev/sdXY) with setup-bootable
.
System Disk Mode
This is a traditional hard-disk install.
If this mode is selected, the setup-alpine
script defaults to create three partitions on the selected storage device, /boot, swap and / (the filesystem root). This mode may, for example, be used for generic desktop and development machines.
For custom partitioning, see Setting_up_disks_manually.
And to install along another operating systems, see Installing_Alpine_on_HDD_dualbooting.
Additional Details
This material needs expanding ...
|
This "Additional Details" section needs to be consolidated with the work at https://docs.alpinelinux.org (not finished) (Restructuring things there, moving and linking from here or there?).
Verifying the downloaded image-file
OS type | SHA256 check |
SHA256 calculation (to be compared manually) |
GPG signature verification
|
---|---|---|---|
Linux | sha256sum -c alpine-*.iso.sha256 |
curl https://alpinelinux.org/keys/ncopa.asc | gpg --import ;
| |
MACOS | - ? - | shasum -a 256 alpine-*.iso |
- ? - |
BSD | - ? - | /usr/local/bin/shasum -a 256 alpine-*.iso |
- ? - |
Windows (PowerShell installed) | - ? - | Get-FileHash .\alpine-<image-version>.iso -Algorithm SHA256 |
- ? - |
Flashing (direct data writing) the installation image-file onto a device or media
Unix/Linux
Under Unix (and thus Linux), "everything is a file" and the data in the image-file can be written onto a device or media with the dd
command. Afterwards, eject
can remove the target device from the system, to ensure the completion of all writes and clearing of the cache.
dd if=<iso-file-to-read-in> of=<target-device-node-to-write-out-to> bs=4M oflag=sync status=progress; eject <target-device-node-to-write-out-to>
Be careful to correctly identify the target device to overwrite, because all previous data on it will be lost! All connected "bulk storage devices" can be listed with lsblk
and blkid
.
# lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sdX 0:0 0 64,0G 0 disk ├─sdX1 0:1 0 2G 0 part └─sdX2 0:2 0 30G 0 part /mnt/sdX2 # blkid /dev/sdX1: LABEL="some" UUID="..." TYPE="vfat" /dev/sdX2: LABEL="other" UUID="..." TYPE="ext4"
For example, if /dev/sdX is the desired target device to write the image to here, then first make sure to un-mount all mounted partitions of the target device individually. For example sdX1 and sdX2.
umount /dev/sdX1 /dev/sdX2
For dd
's out-file (of=
), however, do not specify a partition number. For example, write to sdX and not sdX1:
Warning: This will overwrite the target device /dev/sdX, so before executing, make sure to really have a backup of the data if still need.
dd if=~/Downloads/alpine-standard-3.00.0-x86_64.iso of=/dev/sdX bs=4M oflag=sync status=progress; eject /dev/sdX
Windows
There is, for example, the Rufus program. It allows writing bootable USB flash drives under Windows.
Rufus has been tested and works for Alpine Linux 3.12.x with the following settings:
- Partition scheme:
MBR
- Target system:
BIOS or UEFI
- File system:
FAT32
- Cluster size:
4096 bytes (default)
Verifying the written installation media
After detaching and re-attaching the device, a bit-wise comparison can verify what has been written to the device (instead of just data buffered in RAM). If the comparison terminates with an end-of-file error on the .iso file side, all the contents from the image has been written (and read again) successfully:
# cmp ~/Downloads/alpine-standard-3.00.0-x86_64.iso /dev/sdX cmp: EOF on alpine-standard-3.00.0-x86_64.iso
Booting from external devices
Insert the boot media to a proper drive or port of the computer and turn the machine on, or restart it, if already running.
If the computer does not automatically boot from the desired device, one needs to bring up the boot menu selection for choosing the media to boot from. Depending on the computer the menu may be accessed by quickly (repeatedly) pressing a key when booting starts, or sometimes it is needed to press the button before starting the computer and keep holding it when it boots. Typical keys are: `F9`-`F12`, sometimes `F7` or `F8`. If these don't bring up the boot menu, it may be necessary to enter the BIOS configuration and adjust the boot settings, for which typical keys are: `Del.` `F1` `F2` `F6` or `Esc.`
Custom partitioning of the harddisk
It is possible to specify configurations for RAID, encryption, LVM, etc., or to do manual partitioning.
For "diskless" or "data disk" mode installs, manual partitioning may be needed to prepare a partition on the harddisk for committing local backups of the system state with lbu commit
, for a package cache, or to use it as the /var mount.
For a "sys" install, custom partitioning is only needed if the desired scheme differs from overwriting a whole disk, or creating the default /boot, swap and root partitions.
See Setting_up_disks_manually for the alpine options for RAID, encryption, LVM, etc., and manual partitioning.
Questions asked by setup-alpine
The setup-alpine
script offers to configure:
- Keyboard Layout (Local keyboard language and usage mode, e.g. us and variant of us-nodeadkeys.)
- Hostname (The name for the computer.)
- Network (For example, automatic IP address discovery with the "DHCP" protocol.)
- DNS Servers (Domain name servers to query. For privacy reasons it is NOT recommended to route every local request to servers like google's
8.8.8.8.) - Timezone
- Proxy (Proxy server to use for accessing the web. Use "none" for direct connections to the internet.)
- Mirror (From where to download packages. Choose the organization to trust giving your usage patterns.)
- SSH (Remote login server. The "openssh" is part of the default install images. Use "none" to disable remote logins, e.g. on laptops.)
- NTP (Client package to use for keeping the system clock in sync. Package "chrony" is part of the default install images.)
- Disk Mode (Select between diskless (disk="none"), "data" or "sys", as described above.)
The data on a chosen device will be overwritten!
Preparing for the first boot
If setup-alpine
has finished configuring the disk mode "sys", then the system should be ready to reboot right away (see next subsection).
If the new local system was configured to run in "diskless" or "data" mode, and should not keep booting from the initial (and possibly read-only) installation media, then the boot system needs to be copied to another device or partition.
The target partition may be identified using lsblk
(after installing it with apk add lsblk
) and/or blkid
, similar to previously identifying the initial installation media device.
The procedure to copy the boot system is explained at setup-bootable
Once everything is in place, save the locally customized configurations with lbu commit
before rebooting.
Rebooting and testing the new system
First, the initial installation media has to be removed from the boot drive, or detached.
Then the system may be power-cycled or rebooted to confirm that everything is working.
The relevant commands for this are poweroff
or reboot
.
Completing the installation
The installation script only installs the base operating system. No applications such as a web server, mail server, desktop environment, or web browser are installed, and root
is the only user.
Please look under "Post-Install" below, for some common things to do after installation.
Further Documentation
Installing
- Kernels (kernel selection, e.g. for VMs or RPi)
- Directly booting an ISO file (without flashing it to a disk or device)
- Dual-/multi-boot install to HDD partition
- Setting up Networking (incl. non-standard configurations)
- How to make a custom ISO image with mkimage (installation media with own configuration)
Post-Install
Language support
apk add musl-locales
Installs a limited set of locales for musl (C library) generated console messages in other languages.- Listing of general locales with
locales -a
- Setting with
cp /etc/profile.d/locale.sh /etc/profile.d/locale.sh.sh ; nano /etc/profile.d/locale.sh.sh
.
- Listing of general locales with
apk add lang
Pulls in the translation packages of all installed packages.apk list hunspell*
To look for available hunspell dictionaries.apk list *-xy *-xy-*
To look for translation packages for your specific language (for example, pt for Portuguese).
Documentation
apk add man-pages
Installs basic manual pages.apk add mandoc
A man command to be able to open man pages.apk add mandoc-apropos
The apropos command to search in man pages.apk add docs
Pulls in all the *-doc sub-packages of installed packages.
- Setting up a new user (to allow remote, console, or graphical logins)
- Enable Community Repository (access to additional packages)
- Package Management (apk) (how to search/add/del packages etc.)
setup-xorg-base
(setup graphical base environment)- Xfce_Setup / Gnome_Setup / KDE / MATE (desktop environments)
- How to get regular stuff working (things one may miss in a too lightweight installation )
- Local backup utility
lbu
(persisting RAM system configurations)- Back Up a Flash Memory Installation ("diskless mode" systems)
- Manually_editing_a_existing_apkovl (the stored custom configs)
- Init System (OpenRC) (configure a service to automatically boot at next reboot)
- Hosting services on Alpine (links to several mail/web/ssh server setup pages)
- Running applications and services in their own Firejail Security Sandbox
- Upgrading Alpine (checking for and installing updates)
Further Help and Information
- Comparison with other distros (how common things are done on alpine)
- Running glibc programs (installation and development)
- How to Contribute
- Developer Documentation
- Wiki etiquette to collaborate on this documentation
Other Guides
There may still be something useful to find and sort out of some "newbie" install notes in this wiki, but beware that these pages can lack explanations and contain highly opinionated content, redundantly on many convoluted pages.