Custom Kernel
This material is work-in-progress ... Do not follow instructions here until this notice is removed. |
This process of building a custom configured kernel assumes you are running on Alpine Linux utilizing abuild & aports.
But why?
You want to build a custom kernel to enable experimental hardware or features or outdated hardware, to reduce bloat further, to tune the kernel to the hardware.
The vanilla kernel for most Alpine ARCHs uses defaults to balance throughput at the expense of some responsiveness, and support for many devices. You can tweak the kernel for desktop use and low latency and responsiveness.
Setting up the Alpine Build System
First, you need to follow the steps in Setup your system and account for building packages. You also need to configure your /etc/apk/repositories so that they search locally for your apks. See Testing the package locally for details.
Working with aports
There are several ways to maintain a kernel. The first option is to create a new kernel package. The other option is to just use the existing vanilla kernel just tweaking the configure-vanilla.ARCH file.
Switching to the proper release version
You need to switch to the proper branch that matches the release so that the kernel compiles against the dependencies properly.
Alpine version | Remote branch |
---|---|
Edge | master |
3.7.0 | 3.7-stable |
The following is required to get access to the APKBUILD released for that version of Alpine and which you will create a commit for.
If you are on 3.7 do:
git checkout -b 3.7-stable origin/3.7-stable
If you are on Edge do:
git checkout master
Creating your config
You can use linux-vanilla but what you should do is create a local branch by doing:
For Alpine Edge:
git checkout -b my-custom-kernel
For Alpine 3.7:
git checkout -b my-custom-kernel origin/3.7-stable
Doing it this way, you do less work in maintaining. All you need to do is keep master or 3.7-stable in sync[1][2] and merge any conflicts.
First switch to the branch by doing git checkout my-custom-kernel
. Then, you need to navigate to the main/linux-vanilla folder where you should see a APKBUILD and some config- files. When you are done with your edits either by editing directly the APKBUILD and copying the config-vanilla.ARCH as .config in the linux-4.15 folder. You will then move the .config back overriding the config-vanilla.ARCH generated by make menuconfig
(discussed below in the Configuring kernel section). After generating your config, you need to abuild checksum
. Then, do git add APKBUILD config-vanilla.ARCH
where ARCH is whatever architecture (x86, x86_64, ...) you use. Then, you need to do git commit APKBUILD config-NAME.ARCH -m "Enabled these options ...."
for your customization the ARCHitecture of your system. You do this so that git can keep your code separate from Alpine's and so your changes float forward between kernel updates.
Adding custom patches
Custom patches should be added to sources=.
After you added the URL, you need to produce a checksum by doing abuild checksum
.
The custom patches may not be autopatched, due to being distributed as an archive or different patch level, so you need to define what to do with it in the prepare().
Configuring kernel
Attempt to build the kernel first. To do that, you do abuild -rK to install most of the dependencies. If it complains about a dependency like elfutils-dev use -rKd. Then, when it prompts for values for new found config options just hold enter till it starts compiling the kernel. There should be two sets one for -vanilla and the other for the -virt. Just Ctrl+C out of the compilation process after the second set so you can further customize the config. Then you go into the src/linux-VER and edit the config file. Copy the .config file overriding the config-NAME.ARCH in the srcdir.
The alternative is to use the kernel configuration menu in the build-NAME folder, but before yo do that you need to sudo apk add ncurses-dev
After you are done using the menu in the build-NAME folder by doing make menuconfig
, you want to remove ncurses-dev
. When you are done, it will be stored in .config which you need to again override the config-NAME.ARCH file. When you are done updating the config-NAME.ARCH, you need to do abuild checksum
.
The options in the kernel config are typically defaults. If your device is old, it may be set to n by default.
Vanilla targets and tuning
ARCH | Processor Type / CPU Selection / System Type | Code Generation / Instruction Extensions | Timer Frequency | Preemption Model | Bitness |
---|---|---|---|---|---|
s390x | IBM zEnterprise 114 and 196 | IBM zBC12 and zEC12 (-march=zEC12 -mtune=zEC12 )
|
100 Hz | No Forced Preemption (Server) | 64 |
ppc64le | Server processors | POWER8 (-mcpu=power8 ), AltiVec (-Wa,-maltivec to assembler or -maltivec -mabi=altivec ), VSX
|
100 HZ | No Forced Preemption (Server) | 64 |
ppc |
512x/52xx/6xx/7xx/74xx/82xx/83xx/86xx
|
AltiVec (-Wa,-maltivec to assembler or -maltivec -mabi=altivec ) on >=74xx
|
250 HZ | No Forced Preemption (Server) | 32 |
x86_64 | Generic-x86-64 | (-mtune=generic ; SIMD assembly modules enabled based on simple compile test and/or presence of CPU flag) | 300 HZ | Voluntary Kernel Preemption (Desktop) | 32 |
x86 | 586/K5/5x86/6x86/6x86MX | (-mtune=generic ; SIMD assembly modules enabled based on simple compile test and/or presence of CPU flag) | 300 HZ | Voluntary Kernel Preemption (Desktop) | 32 |
armhf |
|
Either -march=armv7-a or -march=armv5t -Wa,-march=armv7-a based on a compile test. -mfpu=vfp
|
100 Hz | Voluntary Kernel Preemption (Desktop) | 32 |
aarch64 |
|
300 HZ | Voluntary Kernel Preemption (Desktop) | 64 |
If you do desktop multitasking, you may want to switch to Voluntary Kernel Preemption (Desktop) or Preemptible Kernel (Low-Latency Desktop) and up the Timer Frequency. If you run a dedicated render farm node or a dedicated bitcoin miner use No Forced Preemption (Server) and decrease the Timer Frequency.
Optimized modules (most are already compiled as modules):
- raid6 -- altivec, avx512, ssse3, avx2, mmx, sse, sse2, neon
- some operations of raid5 -- mmx (32 bit), sse (64 bit), avx
For Kernel API:
- 32-bit memcpy -- 3dnow
- 32-bit memory page clearing and copying -- sse (Athlon/K7 only), mmx
From x86/crypto, arm/crypto, powerpc/crypto:
- CAMELLIA -- avx2, avx, aes-ni
- CHACHA20 -- avx2, neon
- CAST5 -- avx
- CAST6 -- avx
- TWOFISH -- avx
- SERPENT -- avx2, avx, sse2
- SHA1 -- avx2, ssse3, neon, spe
- SHA2 -- avx2
- SHA256 -- ssse3, neon, spe
- SHA512 -- avx2, ssse3, neon
- POLY1305 -- avx2
- GHASH -- pclmulqdq (part of aes-ni), vmx (power8)
- AES -- aes-ni, neon, vmx (power8), spe
- CRC32 -- pclmulqdq, sse, neon, vmx (power8)
- CRCT10DIF -- pclmulqdq, sse, neon, vmx (power8)
Fast reboots with kexec
If you want to reboot the kernel fast avoiding the POST test, you need sudo apk add kexec-tools
and enable kexec in the kernel:
Processor type and features [*] kexec system call
Hibernation to prevent data loss
Power management and ACPI options [*] Hibernation (aka 'suspend to disk')
Hibernation should be used if you have a laptop. You don't want the laptop to suddenly shut off resulting in data loss, you want it to save your work based on a percentage of battery life (this requires special script). When you do hibernation and when it restores back, it should lock down the computer and ask for prompt. Depending on your needs, the hibernated image can be encrypted/decrypted which again requires additional customization to scripts.
Hibernation with an unsanitized swap file is generally insecure because data and unlocked memory pages is swapped out in plaintext. To increase the security either disable swap (Alpine default) or use an encrypted swap. The swap file/partition is typically used as a dump of the hibernated image.
Building
Before building, you may want to remove much modules as possible. This will reduce the time to compile greatly. Also, you may want to use ccache for faster recompiles.
You should then do an abuild -r
to attempt to build it.
Installing
To install it you do a sudo apk add linux-NAME
where NAME is vanilla or hardened.
Testing
To test, first you should make a bootable Alpine USB image. Then, when you have your rescue USB done, you sudo reboot
the computer.
To test it, you basically do trial and error. Sometimes your config is missing something if you want to have a bare minimum setting.