APKBUILD Reference: Difference between revisions

From Alpine Linux
Line 276: Line 276:
: Overriding this function is strongly discouraged. Packaging OpenRC service definitions should be in the package() function while letting abuild automatically collect the openrc folders.
: Overriding this function is strongly discouraged. Packaging OpenRC service definitions should be in the package() function while letting abuild automatically collect the openrc folders.


: '''Important''': for default_doc() to be called as in no doc(), you need to explicitly add subpackages="$pkgname-openrc".
: '''Important''': for default_openrc() to be called as in no openrc(), you need to explicitly add subpackages="$pkgname-openrc".
 
==== static() ====
: Subpackage function for the '''$pkgname-static''' package whose job is to collect static libraries that are stored in /lib and /usr/lib.
 
: ''[https://github.com/alpinelinux/abuild/blob/v3.4.0_rc4/abuild.in#L1748 default_static()]'' will move all static libraries (files ending with .a) from ''"$pkgdir"/lib'' and ''"$pkgdir"/usr/lib'' to their equivalents in ''$subpkgdir''.
 
: Overriding this function is strongly discouraged. Packaging static libraries should be done in the package() function while letting abuild automatically collect the static libraries.
 
: '''Important''': for default_static() to be called as in no static(), you need to explicitly add subpackages="$pkgname-static".


==== snapshot() ====
==== snapshot() ====

Revision as of 04:34, 9 May 2019

APKBUILDs are the scripts that are created in order to build Alpine packages using the abuild tool.

See aports for details on Alpine's official ports repository.

This page is intended to serve as a reference for creating APKBUILDs; if this is your first time creating a package for Alpine Linux, please see Creating an Alpine package.

Legend

The following notes will assist you in understanding this document.

In description text:

  • If a variable is not prefixed with a $, it will be represented by italics (i.e., srcdir ).
  • Functions will also be represented by italics, but will also end with a pair of parentheses (i.e., build() ).
  • Shell commands will be represented like this.


Variables

Note: Variables that contain a path (e.g. $srcdir and $pkgdir) should always be quoted using double quotes (i.e., "$srcdir"). This is done to prevent things from breaking, should the user have the APKBUILD in a directory path that contains spaces.
Note: All arbitrary variable and function names should be prefixed with an underscore character ( _ ) to avoid name clashes with the internals of abuild (for example, _luaversions).

abuild-defined variables

The following variables are defined by abuild:

startdir

The directory where the APKBUILD script is.

srcdir

The directory where sources, from the source variable, are downloaded to and unpacked to.

pkgdir

This directory should receive the files for the main package. For example, a normal autotools package would have make DESTDIR="$pkgdir" install in the package() function.

subpkgdir

This directory should receive the files for a subpackage. This variable should only be used from subpackage functions.

builddir

This variable should point to the directory inside the srcdir where the main package source is unpacked. This is typically $srcdir/$pkgname-$pkgver. It’s used by the default prepare() function as a working directory when applying patches.


User-defined variables

The following variables should be defined by the user:

arch

Package architecture(s) to build for. Can be one of: x86, x86_64, armhf, aarch64, ppc64le, s390x, all, or noarch, where all means all architectures, and noarch means it's architecture-independent (e.g., a pure-python package).
Tip: To determine if your APKBUILD can use noarch: First specify all and then build the package by executing abuild -r. Watch the output towards the end for warnings saying that noarch can be used. If the main package and all subpackages, if you have any subpackages, give a warning saying that noarch can be used, then you can use noarch.

depends

Run-time dependency package(s) that are not shared-object dependencies. Shared objects dependencies are auto-detected and should not be specified here.

depends_dev

Run-time dependency package(s) for the $pkgname-dev subpackage.
Note: From ncopa on IRC: To find out if you need to add a package to depends_dev have a look at *requires* in usr/lib/pkgconfig/*.pc. With libtool it gets more complicated, but we should delete the .la files. Also check if there are any /usr/bin/*-configure #!/bin/bash #!/usr/bin/perl or Python. Sometimes scripts or similar are generated at build time (i.e autoconf automake) then you normally don't need add those to depends_dev. You can also just add all -dev makedepends to depends_dev but it will slow the build process a little bit (more build dependencies).

depends_doc

Run-time dependency package(s) for the $pkgname-doc subpackage.

depends_openrc

Run-time dependency package(s) for the $pkgname-openrc subpackage.

depends_libs

Run-time dependency package(s) for the $pkgname-libs subpackage.

checkdepends

Dependencies that are only required during the check phase

giturl

Git repository from which abuild checkout checks out. You can checkout a specific branch in git by adding -b $branch.

install

There are 6 different types of install scripts. Install scripts are named $pkgname.action, where action can be: pre-install, post-install, pre-upgrade, post-upgrade, pre-deinstall, or post-deinstall. For example, if pkgname is set to mypackage and install is set to $pkgname.post-install, then a script named mypackage.post-install must exist along-side the APKBUILD.
Note: Always use /bin/sh for the command-line interpreter on the shebang line of your install scripts.

The following are the different types of install scripts in detail:

$pkgname.pre-install
This script is executed before installing the package. Typical use is when the package needs a group and a user to be created. For example:
#!/bin/sh

addgroup -S clamav 2>/dev/null
adduser -S -D -H -s /bin/false -G clamav -g clamav clamav 2>/dev/null

exit 0
Note: If the script exits with a failure (e.g., if the user already exists), the package will not be installed and apk will exit with failure, hence the exit 0 at the end.
$pkgname.post-install
This script is executed after installing the package.
$pkgname.pre-upgrade
This script is executed before upgrading/downgrading/reinstalling the package. Note that exiting with failure will not cause apk to exit with failure, but will mark the package as broken.
$pkgname.post-upgrade
This script is executed after upgrading/downgrading/reinstalling the package.
$pkgname.pre-deinstall
This script is executed before uninstalling the package.
Note: If the script exits with failure, apk will not uninstall the package.
$pkgname.post-deinstall
This script is executed after uninstalling the package.

install_if

install_if can be used when a package needs to be installed when some packages are already installed or are in the dependency tree. It works in reverse to the recommends feature, that other package managers provide.
Example: When package A has install_if="B C", and the user runs apk add B C, then package A will get automatically installed.
Example 2: A real use-case in Alpine is open-vm-tools. Currently it contains the userspace tools and separate packages for the kernel modules (grsec and vserver). When we install the userspace tools, apk should automatically install the correct kernel modules and will need to figure out for which kernel. This is where install_if jumps in. For any of the kernel modules package we would use:
install_if="linux-${_flavor}=${_kernelver} open-vm-tools"
This will automatically install the package when the specified packages are installed or are in dependency tree.

license

License(s) for the package, for example GPL-3.0-or-later, BSD-2-Clause or MIT (details).

makedepends

Build-time dependency package(s).

md5sums/sha256sums/sha512sums

Checksums for the files/URLs listed in source. The checksums are normally generated and updated by executing abuild checksum and should be the last item in the APKBUILD.

New packages should use only sha512sums.

options

Build-time options for the package.
Option Description
!archcheck Do not try to verify that the architecture of the binary files is the same architecture as abuild should build for. One example where it makes sense to set this are packages with firmware files, that get executed on another CPU (such as WiFi firmware).
!check Do not try to run the check() function. Please always add a short comment after the !check about why it's disabled. [1] Creating a very simple check function, that calls program --version is worse than disabling tests completely because it gives the false impression that the package is thoroughly tested with the testsuite from upstream. [2]
checkroot Specifies that the package's test suite will be run in fakeroot. This is necessary for some test suites which fail when run as non-root.
!strip Avoid stripping symbols from binaries.
suid Allow setuid binaries.
!tracedeps Do not automatically find dependencies (e.g. by using ldd to find dynamic libraries, which the resulting binary links against).

pkgdesc

A brief, one-line description of what the package does.
Here's an example from the OpenSSH client package:
pkgdesc="Port of OpenBSD's free SSH release - client"

pkggroups

System group(s) to be created during build-time. System group(s) should also be created in the $pkgname.pre-install script, so that the system group(s) are also created prior to package installation for run-time use.

pkgname

The name of the package. All letters should be lowercase.
Note: When creating an APKBUILD of a module or library for another package, we use some common package prefixes, such as: lua-, perl-, php-, and py-. Search aports for other common prefixes.

pkgrel

Alpine package release number. Starts at 0 (zero). Always increment pkgrel when making updates to an aport; reset pkgrel to 0 (zero) when incrementing pkgver.

pkgusers

System user(s) to be created during build-time. System user(s) should also be created in the $pkgname.pre-install script, so that the system user(s) are also created prior to package installation for run-time use.

pkgver

The version of the software being packaged. Format for valid versions: {digit}{.digit}...{letter}{_suf{#}}...{-r#} [3]
A Suffix suf in the above format can be one of the following to indicate that the release is less recent than the version without the suffix: alpha, beta, pre, rc [4]
These are for indicating more recent releases: cvs, svn, git, hg, p [5]
All other suffices are invalid. To package a specific git commit, the date of the commit gets appended to the latest release, e.g. 1.0.0_git20180204.

provides

List of package names (and optionally version info) this package provides.
If package with a version is provided (provides='foo=1.2') apk will consider it as an alternate name and it will automatically consider the package for installation by the alternate name, and conflict with other packages having the same name, or provides.
If version is not provided (provides='foo'), apk will consider it as virtual package name. Several package with same non-versioned provides can be installed simultaneously. However, none of them will be installed by default when requested by the virtual name - instead, error message is given and user is asked to choose which package providing the virtual name should be installed.

provider_priority

A numeric value which is used by apk-tools to break ties when choosing a virtual package to satisfy a dependency. Higher values have higher priority. The primary use case is to specify the primary package that satisfies a virtual (provider).

replaces

Package(s) that this package replaces. This package will "take over" files owned by packages listed in the replaces variable. This is useful when files move from one package to another, or when a package gets renamed.

replaces_priority

The priority of the replaces. If multiple packages replace each other, then will the package with highest replaces_priority win.

source

The source variable is not only used to list the remote source files to fetch, it is also used to list the local files that abuild will need in order to build the apk. Examples of such local files include: init.d files, conf.d files, install files (see install variable), patches, and all other necessary files.
Here are few things to note:
  • When you are finished adding local and/or remote files to source, you can execute the following command to add their checksums to the APKBUILD file:

abuild checksum

Note: When later updating the content of source, or updating a file that is listed in source, you must also update their checksums again with the same command.
  • When the remote file is hosted at SourceForge, it's best to specify the special mirrors link used by SourceForge:
http://downloads.sourceforge.net/$pkgname/$pkgname-$pkgver.tar.gz
(or similar depending on the package).
  • You can set target filename (eg 'save as...') by prefixing the URI with filename::. This is useful when the remote filename is not specified in the URI (ie, does not end in '/software-1.0.tar.gz'), such as:
http://oss.example.org/?get=software&ver=1.0
or when the filename is braindead, like githubs' download tags:
https://github.com/software/software/archive/v$pkgver.tar.gz
The above two examples needs a target filename prefix:
$pkgname-$pkgver.tar.gz::http://oss.example.org/?get=software&ver=$pkgver
and:
$pkgname-$pkgver.tar.gz::https://github.com/software/software/archive/v$pkgver.tar.gz
  • abuild currently supports the following protocols for remote file retrieval:
    • http
    • https
    • ftp
  • abuild currently supports the following archive types/archive file extensions:
    • .tar (only in Alpine >= 2.5)
    • .tar.gz / .tgz
    • .tar.bz2
    • .tar.lz (only in Alpine >=3.7)
    • .tar.lzma
    • .tar.xz
    • .zip
Note: Legacy APKBUILD scripts define source variable as "saveas-[brain-dead-url]/[target-filename]" format instead of the modern [target-filename]::[brain-dead-url].
BAD: source="saveas-http://releases.ddvtech.com/download.php?pack=libmist_dist&ver=RC/$pkgname-$pkgver.tar.gz"
GOOD: source=$pkgname-$pkgver.tar.gz::http://releases.ddvtech.com/download.php?pack=libmist_dist&ver=RC"

subpackages

Subpackages built from this APKBUILD. abuild will parse this variable and try to find a subpackage split function. The split function must move files that do not belong in the main package, from $pkgdir to $subpkgdir. Files and directories can also be copied from $startdir and $srcdir to $subpkgdir.
The split function can be specified in 1 of 3 different methods:
  1. subpkgname:splitfunc
  2. $pkgname-splitfunc
  3. splitfunc
Note: Split function names cannot use hyphens; use the first method above if the subpackage name contains a hyphen (-) character, like this: subpkg-name:subpkg_name, where subpkg-name is the name of the subpackage and subpkg_name is the name of the subpackage's split function.
Tip: For more information, see the Subpackages example.

triggers

Apk-tools can "monitor" directories and execute a trigger if any package installed/uninstalled any file in the monitored dir. The triggers are always executed after the apk action (install, uninstall, upgrade).
The triggers are specified in the format: scriptname=pathlist where scriptname is the (sub)package name + .trigger suffix and pathlist is : separated list of the dirs to monitor.
The triggers variable must include the triggers for subpackages too if they have any.
It is possible to use wildcards (*) in the dir list.

url

The homepage for the package. This is to help users find upstream documentation and other information regarding the package.

Functions

Note: All functions should consider the current working directory as undefined, and should therefore use the abuild-defined directory variables to their advantage.
sanitycheck() -> clean()-> fetch() -> verify() -> unpack() -> prepare() -> mkusers() -> build() -> check() -> package() -> subpackages() -> language packs -> apk -> cleanup()

abuild-defined functions

The following functions are provided by abuild and can be overridden, but it is strongly discouraged on code review for some functions:

fetch()

Downloads remote sources listed in source to SRCDEST (SRCDEST is configured in /etc/abuild.conf) and creates symlinks in $srcdir.

unpack()

unpack() will call default_unpack().
default_unpack() unpacks .tar, .tgz, .tar.gz, .tar.lz (only available in Alpine >=3.7), .tar.bz2, .tar.lzma, .tar.xz, and .zip archives from a symlink in $srcdir associated with $SRCDEST (or distfiles folder) resulting in an unpacked folder in $srcdir.

dev()

Subpackage function for the $pkgname-dev package is used to collect developer files and folders for use in other packages in the compilation process nothing more. Without specifying a custom dev() function, abuild will call its internal dev() function, which in turn calls default_dev().
default_dev() will move any include folder and folders containing *.[acho] (static archive, c source, c header file, object file), *.prl file extension patterns in "$pkgdir"/{lib,usr} to "$subpkgdir"/{lib,usr} recursively; and *.so files from "$pkgdir"/{lib,usr/lib} to "$subpkgdir"/{lib,usr/lib}. It will also scan and move usr/{include,lib/{pkgconfig,cmake,qt*/mkspecs},share/{aclocal,gettext,vala/vapi,gir-[0-9]*,qt*/mkspecs},bin/*-config}} developer only folders in $pkgdir and transfer them to $subpkgdir.
In general, default_dev() will support packages that share pkg-config, C programming language API, shared and static libraries, Autotools, gettext, Vala programming language bindings, Python GObject introspection, a provided custom pkg-config like command (*-config), Qt, and CMake. If you have packages that have C++, other languages, other build system, etc; you need to manually move those developer files only if they are to be used in other packages.
Important: For default_dev() to be called as in no dev(), you need to explicitly add subpackages="$pkgname-dev".

doc()

Subpackage function for the $pkgname-doc package whose job is only to collect documentation folders from $pkgdir nothing more. Without specifying a custom doc() function, abuild will call its internal doc() function, which in turn calls default_doc().
default_doc() will move "$pkgdir"/usr/share/{doc,man,info,html,sgml,licenses,gtk-doc,ri,help} to $subpkgdir.
Overriding this function is strongly discouraged. Packaging docs should be done in the package() function while letting abuild automatically collect the doc folders.
Important: For default_doc() to be called as in no doc(), you need to explicitly add subpackages="$pkgname-doc".

openrc()

Subpackage function for the $pkgname-opernc package whose job is to collect OpenRC service files that are in /etc/init.d and /etc/conf.d.
default_openrc() will move "$pkgdir"/etc/{conf,init}.d to $subpkgdir.
Overriding this function is strongly discouraged. Packaging OpenRC service definitions should be in the package() function while letting abuild automatically collect the openrc folders.
Important: for default_openrc() to be called as in no openrc(), you need to explicitly add subpackages="$pkgname-openrc".

static()

Subpackage function for the $pkgname-static package whose job is to collect static libraries that are stored in /lib and /usr/lib.
default_static() will move all static libraries (files ending with .a) from "$pkgdir"/lib and "$pkgdir"/usr/lib to their equivalents in $subpkgdir.
Overriding this function is strongly discouraged. Packaging static libraries should be done in the package() function while letting abuild automatically collect the static libraries.
Important: for default_static() to be called as in no static(), you need to explicitly add subpackages="$pkgname-static".

snapshot()

Optional. For live APKBUILDs or those with a _cvs, _svn, _git, _hg in their version number, you should create a snapshot function only if there is no download link to an archive file (.zip, .tar.gz, ...) to the commit/hash/tag. The purpose of the snapshot function is to create an archive of the source code so that the package source code is deterministic, and it doesn't waste time to fetch the source code but bypasses the download step after snapshotting. Those that download the source code from a git repository will follow head or the latest change to the source code. It is better to archive the source code as a zip / tar.gz / tar.bz2 up to the commit or the tag which you are trying to build a package. If it is not deterministic or not every part of the code frozen in time for every dependency and the main project, then the patches will fail or the package may fail to compile when you revisit the package months or years to backport a patch.
The default snapshot() function has variables associated with it:
  • $disturl - the base-url of the place to autoupload the snapshot
  • $svnurl - Subversion repository
  • $giturl - Git repository
The default snapshot() can only support one repository. It is better to override it if there are multiple repositories involved in your package. CVS, Mercurial (hg), and alternative version control systems must override the default snapshot().
See APKBUILD_examples:Git_checkout to how to use it with git. It takes 2-3 general steps. Clone the repository; check it out at a specific revision/commit or tag; then you use an archiver to dump it in the $SRCDEST variable which points to the distfiles folder and the base path to the full path to the archive that you want to create. You do this for every internal dependency that the package pulls.
After you have created your snapshot function, you use abuild snapshot to run it.
The archives produced by the snapshot will be saved in /var/cache/distfiles or whatever you set for $SRCDEST. You may need to create symlinks to the archive if the archive is not saved to the Alpine server.
After you snapshot it, you need to produce the checksums with abuild checksum to use it in the APKBUILD creation process.
This feature is available since Alpine >=2.6.

User-defined functions

The following functions should be defined by the user:

prepare()

Note: Please adjust old APKBUILDs, which still have a prepare() function that does the same as the default_prepare() when you edit them anyway.
Optional. Used for build preparation: patches, etc, should be applied here. When you don't specify a custom prepare(), the built-in default_prepare() from abuild will be used. It applies patches already (always prepare them in the -p1 format), so usually it makes sense to not create a custom prepare() function at all! If you do create one, call default_prepare() inside it:
Before default_prepare gets called, you can define patch_args to supply the argument to the patch command in global scope then throw away prepare() so it is unnecessary to use the old template code floating around to patch. patch_args and autopatching is only available in Alpine >=3.4. See Creating_an_Alpine_package#Patches to fix the patch that uses a different patch level (-pX).
prepare() {
    default_prepare
    # your custom code here
}

build()

Required. This is the compilation stage. This function will be called as the current user (unless the package() function is missing - for compatibility reasons). If no compilation is needed, this function can contain a single line: return 0
To enable or disable CFLAGS, CXXFLAGS, CMake with option, or configure option per arch, use the CARCH variable:
local cmakeoptions=
case "$CARCH" in
        aarch64*|arm*|ppc64le|x86|s390x) cmakeoptions="$cmakeoptions -DWITH_OPENMP=OFF" ;;
        x86_64)                          cmakeoptions="$cmakeoptions -DWITH_OPENMP=ON" ;;
        *)                               msg "Unable to determine architecture from (CARCH=$CARCH)" ; return 1 ;;
esac
The block can be used in other parts of the APKBUILD even in global.

check()

Required if functionality exists. This function is called right after the build stage. It should check that the packaged thing is actually working, typically by running (integration) tests, if provided by upstream. If there’s no (easy) way how to test the package, you can declare that it does not want to use check() by adding "!check" into the options variable (options="!check").
default_check() does nothing. You need to manually explicitly call the unit tests or test suite yourself. When you run the test, the program should return with an exit code of 0, indicating the tests were a success. Unit tests or test suites will do feature tests, per function correctness check, fuzz testing, benchmarks.
A package may also require additional testing frameworks packages that are external dependencies. You should add those to the checkdepends= in Alpine >=3.6 or makedepends= for older for backporters. If the testing framework is not available, you need to create a package for it. If it requires a specific version of a testing framework, consider making it an internal dependency or a new package with a package name containing the major and minor version number like the python packages.
Generally speaking, you should define the check functions for libraries, large programs like web browsers, or compilers and interpreters, cryptographic/security/anonymity stuff, mission critical stuff, PCI compliance/money/accounting software, server software with a lot of stakeholders or consumers. Soon for the new policy change will have virtually all packages with testing capabilities be required to have a working and defined check() function.
There are times when the unit tests do not work, just because the test itself is broken, new unimplemented feature, external factors not taken into consideration, unbundling path differences, breakage caused by ccache, missing test dependency or version mismatch dependency as in python2 vs python3, test scripts only work for particular language implementation like only supporting python2 but not python3 having used the 2to3 conversion script. If a unit test is known not to work, you may need to patch it to omit that test or fix it; but, certain tests should not be disabled if it is important. You may need to alter the references to uncompiled internal dependencies to work with the external dependencies instead. For ccache, you can either disable it or remove it from the PATH environmental variable before running tests.
If you don't add the check() and the options=, this is what you will see:
 >>> WARNING: py-webtest*: APKBUILD does not run any tests!
   Alpine policy will soon require that packages have any relevant testsuites run during the build process.
   To fix, either define a check() function, or declare !check in $options to indicate the package does not have a testsuite.
If you do not do a check or disable it, you must state there is no testsuite in comment form (#) next to options="!check" for the code reviewers.
To run test suite with autotools do:
 make check
To run the test suite with python setuptools:
 python2 setup.py test
 python3 setup.py test
For python it should be test not check. Check for python setuptools will check the packaging metadata fields[6] only but not run the unit tests. There should be verbose output also. The dependencies for the tests are found in test_require in the setup.py.
If it says Ran 0 tests in 0.000s that is not acceptable. check() will say it was good but it is not actually correct. It needs to run the test suite with an alternative method like tox -e py27,py36 if you see a tox.ini file.
You want to do it for each implementation to ensure that the API calls are correct per implementation but ncopa said it was just fine with python3.
If there is a circular dependency for the checkdepends=, you need to disable the check and put the reason next to options="!check" that there is a circular dependency. You should disable it for the package that package that is least important or least security risk. The other solution is to make the conflicting dependency an internal dependency but making sure that it doesn't pull it at check time. This way they can both preform tests properly.

package()

Required. This is the packaging stage. Here, the built application and support files should be installed into $pkgdir. If this is a metapackage, this function can contain a single line: mkdir -p "$pkgdir"
Note: Building in fakeroot will reduce performance for parallel builds dramatically. It is for this reason that we split the build and package process into two separate functions.

Examples

The APKBUILD examples page will assist you in understanding how to create an APKBUILD.

Version

This document assumes abuild for Alpine Edge. For older releases of abuild, some of these features may not be available if you are using an older release. A link to the implementation is linked for researchers and backporters.

For more information see APKBUILD_versions.