LVM on LUKS: Difference between revisions

From Alpine Linux
m (→‎Syslinux with BIOS: changed 'vda' to 'sda' for dd command)
(20 intermediate revisions by 8 users not shown)
Line 1: Line 1:
= Introduction =
= Introduction =


This documentation describes how to set up Alpine Linux using a logical volume (LV), that is installed in an encrypted partition. To encrypt the partition the logical volume manager (LVM) the volume group (VG) is installed in, the Device Mapper crypt (dm-crypt) module and Linux Unified Key Setup (LUKS) is used.
This documentation describes how to set up Alpine Linux on a fully encrypted disk (apart from the bootloader's partition). We will have an LVM container installed inside an encrypted partition. To encrypt the partition containing the LVM volume group, dm-crypt (which is managed by the <code>cryptsetup</code> command) and its LUKS subsystem is used.


Note that you must install the <code>/boot/</code> directory on an unecrypted partition to boot correctly.
Note that your <code>/boot/</code> partition must be non-encrypted to work with Syslinux. When using GRUB2 it is possible to boot from an encrypted partition to provide a layer of protection from [https://en.wikipedia.org/wiki/Evil_maid_attack Evil Maid attacks], but Syslinux doesn't support this.


== Storage Device Name ==


== Hard Disk Device Name ==
To find your storage device's name, you could either install <code>util-linux</code> (<code>apk add util-linux</code>) and find your device using the <code>lspci</code> command, or you could make an educated guess by using BusyBox's <code>blkid</code> and <code>df</code> commands, and running <code>ls /dev/sd*</code> if you are installing to a USB, SATA or SCSI device, <code>ls /dev/fd*</code> for floppy disks and <code>ls /dev/hd*</code> for IDE (PATA) devices.


The following documentation uses the <code>vda</code> device as installation destination. If your environment uses a different device name for your hard disk, use the corresponding device names in the examples.
The following documentation uses the <code>/dev/sda</code> device as installation destination. If your environment uses a different device name for your storage device, use the corresponding device names in the examples.


= Setting up Alpine Linux Using LVM on Top of a LUKS Partition =


To install Alpine Linux in logical volumes running on top of a LUKS encrypted partition, you cannot use the [[Installation|official installation]] procedure. The installation requires several manual steps you must run in the Alpine Linux Live CD environment.


== Preparing the Temporary Installation Environment ==


Before you begin to install Alpine Linux, prepare the temporary environment:


= Setting up Alpine Linux Using LVM on Top of a LUKS Partition =
Boot the latest Alpine Linux Installation CD. At the login prompt, use the <code>root</code> user without a password to log in. Now we will follow the [[Setup-alpine]] script and make our changes along the way.
 
Run the scripts in this order:
 
<pre># setup-keymap
# setup-hostname
# setup-interfaces
# rc-service networking start</pre>


To install Alpine Linux in logical volumes running on top of a LUKS encrypted partition, you cannot use the [[Installation|official installation]] procedure. The installation requires several manual steps you must run in the Alpine Linux Live CD environment.
If you are configuring static networking (you didn't configure any interfaces to use DHCP), run <code>setup-dns</code>.


<pre># passwd
# setup-timezone
# rc-update add networking boot
# rc-update add urandom boot
# rc-update add acpid default
# rc-service acpid start</pre>


Edit your {{Path|/etc/hosts}} to look like this, replacing <hostname> with your hostname and <domain> with your TLD (if you don't have a TLD, use 'localdomain':
{{Tip|The default text editor in BusyBox is <code>vi</code> (pronounced ''vee-eye'').}}
{{Cat|/etc/hosts|127.0.0.1      <hostname> <hostname>.<domain> localhost localhost.localdomain
::1            <hostname> <hostname>.<domain> localhost localhost.localdomain}}


== Preparing the Temporary Installation Environment ==


Before you begin to install Alpine Linux, prepare the temporary environment:
{{Note|In order to setup GRUB with UEFI, you are required to use the edge branch with the main and community repository. The reason for this is that <code>efibootmgr</code> is not available in the stable branch. If you do not want to switch completely over to edge you can do something called repository pinning. You will need to do this after the <code>setup-apkrepos</code> step.}}


{{Note|All settings in this section apply only to the temporary environment and not to the later installed Alpine Linux on your hard disk.}}
<pre># setup-apkrepos
# apk update
# setup-sshd
# setup-ntp</pre>


* Boot the latest Alpine Linux Installation CD.
Now we will deviate from the install script.


* At the login prompt, use the <code>root</code> user without password to log in.
Install the following packages required to set up LVM and LUKS:


* Optionally, set the keyboard language:
{{Note|The <code>parted</code> partition editor is needed for advanced partitioning and GPT disklabels. BusyBox <code>fdisk</code> is a very stripped-down version with minimal functionality}}


# setup-keymap
<pre># apk add lvm2 cryptsetup e2fsprogs parted</pre>


: The default keyboard mapping is <code>us-us</code>
Optionally, if you want to overwrite your storage with random data first, install <code>haveged</code>, which is a random number generator based on hardware events and has a higher throughput than <code>/dev/urandom</code>:


* Configure the network interface:
<pre># apk add haveged
# rc-service haveged start</pre>


# setup-interfaces
== Creating the Partition Layout ==


: If you set a static IP address, additionally configure DNS be able to resolve host names:
=== BIOS/MBR with DOS disklabel ===


# setup-dns
We will be partitioning the storage device with a non-encrypted <code>/boot</code> partition for use with the Syslinux bootloader. Syslinux is meant for use with legacy BIOS and the MSDOS MBR partition table. Syslinux does support GPT partition tables but GRUB2 is the better option for UEFI.


* Enable the network interface. For example:
<pre>+---------------------------+------------------------+-----------------------+
| Partition name            | Partition purpose      | Filesystem type      |
+---------------------------+------------------------+-----------------------+
| /dev/sda1                | Boot partition        | ext4                  |
| /dev/sda2                | LUKS container        | LUKS                  |
| |-> /dev/mapper/lvmcrypt  | LVM container          | LVM                  |
|  |-> /dev/vg01/root      | Root partition        | ext4                  |
|  |-> /dev/vg01/swap      | Swap partition        | swap                  |
+---------------------------+------------------------+-----------------------+</pre>


# ifup eth0
{{Warning|This will delete your previous partitioning table and make your data very hard to recover. If you want to dual boot, stop here and ask an expert.}}


* Set an apk repository and update the cache:
Create an approx. 100MB partition to boot off, then assign the rest of the space to your LUKS partition.


# setup-apkrepos
<pre># parted -a optimal
# apk update
(parted) mklabel msdos
(parted) mkpart primary ext4 0% 100M
(parted) name 1 boot
(parted) set 1 boot on
(parted) mkpart primary ext4 100M 100%
(parted) name 2 crypto-luks</pre>


* Install the following packages required to set up LVM and LUKS:
To view your partition table, type <code>print</code> while still in <code>parted</code>. Your results should look something like this:
<pre>(parted) print
Model: ATA TOSHIBA ******** (scsi)
Disk /dev/sda: 1000GB
Sector size (logical/physical): 512B/4096B
Partition Table: msdos
Disk Flags:


  # apk add haveged lvm2 cryptsetup e2fsprogs syslinux
Number Start  End    Size    Type    File system  Flags
1      1049kB  99.6MB  98.6MB  primary  ext4        boot
2      99.6MB  1000GB  1000GB  primary  ext4</pre>


: Optionally, you can install a different editor, such as <code>nano</code>, to edit files in later steps if you do not want to use VI.
=== UEFI with GPT disklabel ===


* Optionally, start the <code>haveged</code> service for unpredictable random numbers used for encryption:
We will be encrypting the whole disk but the EFI system partition mounted at <code>/boot/efi</code>. This means that GRUB2 will decrypt the LUKS volume and load the kernel from there, preventing someone with physical access to your computer from maliciously installing a rootkit (or bootkit) in your boot partition while your computer is not already unlocked. The partitioning scheme will look like this:


  # rc-service haveged start
<pre>+---------------------------+------------------------+-----------------------+
| Partition name            | Partition purpose      | Filesystem type      |
+---------------------------+------------------------+-----------------------+
| /dev/sda1                | EFI system partition  | fat32                |
| /dev/sda2                | LUKS container        | LUKS                  |
| |-> /dev/mapper/lvmcrypt  | LVM container          | LVM                  |
|  |-> /dev/vg01/root      | Root partition        | ext4                  |
|  |-> /dev/vg01/boot      | Boot partition        | ext4                  |
| |-> /dev/vg01/swap      | Swap partition        | swap                  |
+---------------------------+------------------------+-----------------------+</pre>


{{Warning|This will delete your previous partitioning table and make your data very hard to recover. If you want to dual boot, stop here and ask an expert.}}


Create an approx. 200MB EFI system partition, then assign the rest of the space to your LUKS partition.


== Creating the Partition Layout ==
<pre># parted -a optimal
(parted) mklabel gpt
(parted) mkpart primary fat32 0% 200M
(parted) name 1 esp
(parted) set 1 esp on
(parted) mkpart primary ext4 200M 100%
(parted) name 2 crypto-luks</pre>


Linux requires an unencrypted <code>/boot/</code> partition to boot. You can assign the remaining space for the encrypted LVM physical volume (PV).
== Optional: Overwrite LUKS Partition with Random Data ==


* Start the <code>fdisk</code> utility to set up partitions:
This should be done if your hard drive wasn't encrypted previously. It helps purge old, non-encrypted data and makes it harder for an attacker to work out how much data you have on your drive if they have access to the encrypted contents.


# fdisk /dev/vda
We will be using <code>haveged</code> as it is considerably faster than <code>/dev/urandom</code> when generating pseudo-random numbers (it's almost as high as <code>/dev/zero</code> in throughput), and is (supposedly) very close to truly random.


:* Create the <code>/boot/</code> partition:
<pre># haveged -n 0 | dd of=/dev/sda2</pre>
::* Enter <code>n</code> &rarr; <code>p</code> &rarr; <code>1</code> &rarr; <code>1</code> &rarr; <code>100m</code> to create a new 100 MB primary partition.


:* Set the <code>/boot/</code> partition active:
== Encrypting the LVM Physical Volume Partition ==
::* Enter <code>a</code> &rarr; <code>1</code>.


:* Create the LVM PV partition:
To encrypt the partition which will later contain the LVM PV, you could either use the default settings (aes-xts-plain64 cipher with 256-bit key and Argon2 hashing with iter-time 2000ms), or you could use these settings which have added security with the trade-off being a non-noticeable decrease in performance in modern computers:
::* Enter <code>n</code> &rarr; <code>p</code> &rarr; <code>2</code> to start creating the next partition. Press <code>Enter</code> to select the default start cylinder. Enter the size of partition. For example, <code>512m</code> for 512 MB or <code>5g</code> for 5 GB. Alternatively press <code>Enter</code> to set the maximum available size.


:* Set the partition type for the LVM PV:
Default settings:
::* Enter <code>t</code> &rarr; <code>2</code> &rarr; <code>8e</code>


:* To verify the settings, press <code>p</code>. The output shows, for example:
<pre># cryptsetup luksFormat /dev/sda2</pre>


    Device Boot    Start      End    Blocks  Id System
Optimized for security:
/dev/vda1  *          1      100      50368+  83 Linux
/dev/vda2            101    10402    5192208  8e Linux LVM


* Press <code>w</code> to save the changes.
<pre># cryptsetup -v -c serpent-xts-plain64 -s 512 --hash whirlpool --iter-time 5000 --use-random luksFormat /dev/sda2</pre>


* Optionally, wipe the LVM PV partition with random values:
== Creating the Logical Volumes and File Systems ==


# haveged -n 0 | dd of=/dev/vda2
Open the LUKS partition:


: Depending on the size of the partition, this process can take several minutes to hours.
<pre># cryptsetup luksOpen /dev/sda2 lvmcrypt</pre>


Create the PV on <code>lvmcrypt</code>:


<pre># pvcreate /dev/mapper/lvmcrypt</pre>


== Encrypting the LVM Physical Volume Partition ==
Create the <code>vg0</code> LVM VG in the <code>/dev/mapper/lvmcrypt</code> PV:


* To encrypt the partition which will later contain the LVM PV:
<pre># vgcreate vg0 /dev/mapper/lvmcrypt</pre>


# cryptsetup luksFormat /dev/vda2
=== LV Creation fro BIOS/MBR ===


:{{Note|Alpine Linux uses the <code>en-us</code> keyboard mapping when prompting for the password to encrypt the partition at boot time. If you changed the keyboard map in the temporary environment, the password you enter during encrypting the partition in this step, may not match the password you will enter during the system boots.}}
This will create a 2GB swap partition and a root partition which takes up the rest of the space. This setup is for those who do not need to use the hibernate/suspend to disk state. If you do need to suspend to disk, create a swap partition slightly larger than the size of your RAM (change the size after <code># lvcreate -L</code>).
: If you prefer setting an individual hashing algorithm and hashing schema:
:* To run a benchmark:


# cryptsetup benchmark
<pre># lvcreate -L 2G vg0 -n swap
# lvcreate -l 100%FREE vg0 -n root</pre>


:* To encrypt the partition using individual settings, enter, for example:
The LVs created in the previous steps are automatically marked active. To verify, enter:


# cryptsetup -v -c serpent-xts-plain64 -s 512 --hash whirlpool --iter-time 5000 --use-random luksFormat /dev/vda2
<pre># lvscan</pre>


=== LV Creation for UEFI/GPT ===


This will create a 2GB swap partition, a 2GB boot partition and a root partition which takes up the rest of the space. This setup is for those who do not need to use the hibernate/suspend to disk state. If you do need to suspend to disk, create a swap partition slightly larger than the size of your RAM (change the size after <code># lvcreate -L</code>).


== Creating the Logical Volumes and File Systems ==
<pre># lvcreate -L 2G vg0 -n swap
# lvcreate -L 2G vg0 -n boot
# lvcreate -l 100%FREE vg0 -n root</pre>


* Open the LUKS partition:
The LVs created in the previous steps are automatically marked active. To verify, enter:


# cryptsetup open --type luks /dev/vda2 lvmcrypt
<pre># lvscan</pre>


* Create the PV on <code>/dev/vda</code>:
== Creating and Mounting the File Systems ==


# pvcreate /dev/mapper/lvmcrypt
Format the <code>root</code> and <code>boot</code> LVs using the ext4 file system:


* Create the <code>vg0</code> LVM VG in the <code>/dev/mapper/lvmcrypt</code> PV:
<pre># mkfs.ext4 /dev/vg0/root</pre>


# vgcreate vg0 /dev/mapper/lvmcrypt
Format the swap LV:


* Create the LVs:
<pre># mkswap /dev/vg0/swap</pre>


: In the following you will create a LV for the root partition. However, you can use the same command with a different LV name to create further LVs for other mount points you want to create.
Before you can install Alpine Linux, you must mount the partitions and LVs. Mount the root LV to the <code>/mnt/</code> directory:


:* To create a 2 GB LV named <code>root</code> in the <code>vg0</code> VG:
<pre># mount -t ext4 /dev/vg0/root /mnt/</pre>


# lvcreate -L 2G vg0 -n root
Next format your boot partition, create a mount point and mount it:


: Create a 512 MB swap LV:
* If you're using BIOS and MBR:


# lvcreate -L 512M vg0 -n swap
<pre># mkfs.ext4 /dev/sda1
# mkdir -v /mnt/boot
# mount -t ext4 /dev/sda1 /mnt/boot</pre>


* The LVs created in the previous steps are automatically marked active. To verify, enter:
* If you're using UEFI and GPT:


# lvscan
<pre># apk add dosfstools
# mkfs.fat -F32 /dev/sda1
# mkfs.ext4 /dev/vg0/boot
# mkdir -v /mnt/boot
# mount -t ext4 /dev/vg0/boot /mnt/boot
# mkdir -v /mnt/boot/efi
# mount -t vfat /dev/sda1 /mnt/boot/efi</pre>


: Format the <code>root</code> LV using the ext4 file system:
Lastly, activate your swap partition:


# mkfs.ext4 /dev/vg0/root
<pre># swapon /dev/vg0/swap</pre>


: If you created further LVs in the previous step, create the file systems on them using the same command with the path to the LV.
== Installing Alpine Linux ==


* Format the swap LV:
In this step you will install Alpine Linux in the <code>/mnt/</code> directory, which contains the mounted file system structure:


# mkswap /dev/vg0/swap
<pre># setup-disk -m sys /mnt/</pre>


* Format the <code>/dev/vda1</code> device for the <code>/boot/</code> partition using the ext4 file system:
The installer downloads the latest packages to install the base installation. Additionally, the installer automatically creates the entries for the mount points in {{Path|/etc/fstab}} file, which is currently mounted in the <code>/mnt/</code> directory.


# mkfs.ext4 /dev/vda1
{{Note|The automatic writing of the master boot record (MBR) fails in this step. You will write the MBR later manually to the disk.}}


To get the UUID of your storage device into a file for later use, use this command:


<pre># blkid -s UUID -o value /dev/sda2 > ~/uuid</pre>


== Mounting the File Systems ==
To enable the operating system to decrypt the PV at boot time, create the {{Path|/mnt/etc/crypttab}} file. Enter the following line into the file to decrypt the <code>/dev/sda2</code> partition using the <code>luks</code> module and map it to the <code>lvmcrypt</code> name:


Before you can install Alpine Linux, you must mount the partitions and LVs:
<pre>lvmcrypt    UUID=<UUID>    none    luks</pre>


* Mount the root LV to the <code>/mnt/</code> directory:
{{Tip|To easily read the UUID into this file so you don't have to type it manually, open it in <code>vi</code>, then type <code>:r ~/uuid</code> to load the UUID onto a new line.}}


# mount -t ext4 /dev/vg0/root /mnt/
{{Note|To enable TRIM append <code>discard</code> after <code>luks</code> in <code>/mnt/etc/crypttab</code> (coma separated). If LVM is being used you'll also need to change <code>issue_discards</code> to equal 1 in <code>/mnt/etc/lvm.conf</code>. You will then want to add a cron job for <code>/sbin/fstrim</code> to run periodically. Be aware that there are security risks involved when enabling TRIM with LUKS.}}


* Create <code>/mnt/boot/</code> directory and mount the <code>/dev/vda1</code> partition in this directory:


# mkdir /mnt/boot/
The swap LV is not automatically added to the <code>fstab</code> file. To add it manually, add the following line to the {{Path|/mnt/etc/fstab}} file:
# mount -t ext4 /dev/vda1 /mnt/boot/


: If you created further partitions or LVs, create the mount points within the <code>/mnt/</code> directory and mount the devices.
<pre>/dev/vg0/swap    swap    swap    defaults    0 0</pre>


== Installing Alpine Linux ==
Edit the {{Path|/mnt/etc/mkinitfs/mkinitfs.conf}} file and append the <code>cryptsetup</code> module to the <code>features</code> parameter:


In this step you will install Alpine Linux in the <code>/mnt/</code> directory, which contains the mounted file system structure:
<pre>features="... cryptsetup"</pre>


* Install Alpine Linux:
{{Note|Alpine Linux uses the <code>en-us</code> keyboard mapping by default when prompting for the password to decrypt the partition at boot time. If you changed the keyboard mapping in the temporary environment and want to use it at the boot password prompt, be sure to also add the <code>keymap</code> feature to the list above.}}


# setup-disk -m sys /mnt/
{{Note|Check the output of <code>mkinitfs -L</code> and add the features necessary for your system to boot. You may need to add <code>kms</code> in order to see a password prompt at boot.}}


: The installer downloads the latest packages to install the base installation. Additionally, the installer automatically creates the entries for the mount points in the <code>fstab</code> file, which are currently mounted in the <code>/mnt/</code> directory.


: {{Note|The automatic writing of the master boot record (MBR) fails in this step. You will write the MBR later manually to the disk.}}
Rebuild the initial RAM disk:


* To enable the operating system to decrypt the PV at boot time, create the <code>/mnt/etc/crypttab</code> file. Enter the following line into the file to decrypt the <code>/dev/vda2</code> partition using the <code>luks</code> module and map it to the <code>lvmcrypt</code> name:
<pre># mkinitfs -c /mnt/etc/mkinitfs/mkinitfs.conf -b /mnt/ $(ls /mnt/lib/modules/)</pre>


lvmcrypt    /dev/vda2    none    luks
The command uses the settings from the <code>mkinitfs.conf</code> file set in the <code>-c</code> parameter to generate the RAM disk. The command is executed in the <code>/mnt/</code> directory and the RAM disk is generated using the modules for the installed kernel. Without setting the kernel version using the <code>$(ls /mnt/lib/modules/</code>) option, <code>mkinitfs</code> tries to generate the RAM disk using the kernel version installed in the temporary environment, which can differ from the latest one installed by the <code>setup-disk</code> utility.


* The swap LV is not automatically added to the <code>fstab</code> file. To add it manually, add the following line to the <code>/mnt/etc/fstab</code> file:
== Installing a bootloader ==
=== Syslinux with BIOS ===


/dev/vg0/swap    swap    swap    defaults    0 0
Install the Syslinux package:


* Edit the <code>/mnt/etc/mkinitfs/mkinitfs.conf</code> file and append the <code>cryptsetup</code> module to the <code>features</code> parameter:
<pre># apk add syslinux</pre>


features="ata base ide scsi usb virtio ext4 lvm <u>cryptsetup</u>"
Edit {{Path|/mnt/etc/update-extlinux.conf}} and append the following kernel options to the <code>default_kernel_opts</code> parameter, replacing <UUID> with the UUID of <code>/dev/sda2</code>:


* Rebuild the initial RAM disk:
<pre>default_kernel_opts="... cryptroot=UUID=<UUID> cryptdm=lvmcrypt"</pre>


# mkinitfs -c /mnt/etc/mkinitfs/mkinitfs.conf -b /mnt/ $(ls /mnt/lib/modules/)
The <code>cryptroot</code> parameter sets the name of the device that contains the root file system, and the <code>cryptdm</code> parameter sets the name of the mapping previously set in <code>crypttab</code>.


: The command uses the settings from the <code>mkinitfs.conf</code> file set in the <code>-c</code> parameter to generate the RAM disk. The command is executed in the <code>/mnt/</code> directory and the RAM disk is generated using the modules for the installed kernel. Without setting the kernel version using the <code>$(ls /mnt/lib/modules/</code>) option, <code>mkinitfs</code> tries to generate the RAM disk using the kernel version installed in the temporary environment, which can differ from the latest one installed by the <code>setup-disk</code> utility.
Because the <code>update-extlinux</code> utility operates only on the <code>/boot/</code> directory, temporarily change the root to the <code>/mnt/</code> directory and update the boot loader configuration:


* Edit the <code>/mnt/etc/update-extlinux.conf</code> file and append the following kernel options to the <code>default_kernel_opts</code> parameter:
<pre># chroot /mnt/
# update-extlinux
# exit</pre>


default_kernel_opts="... <u>cryptroot=/dev/vda2 cryptdm=lvmcrypt</u>"
: If an error occurs in the <code>update-extlinux</code> command you can most likely ignore it.


: The <code>cryptroot</code> parameter sets the name of the device that contains the root file system. The <code>cryptdm</code> parameter sets the name of the mapping previously set in the <code>crypttab</code> file.
Write the MBR to the <code>/dev/sda</code> device:


* Because the <code>update-extlinux</code> utility operators only on the <code>/boot/</code> directory, temporarily change the root to the <code>/mnt/</code> directory and update the boot loader configuration:
<pre># dd bs=440 count=1 conv=notrunc if=/mnt/usr/share/syslinux/mbr.bin of=/dev/sda</pre>


# chroot /mnt/
=== Grub with UEFI ===
# update-extlinux
# exit


: Ignore the errors the <code>update-extlinux</code> utility displays.
Mount the required filesystems for the Grub EFI installer to the installation:


* Write the MBR to the <code>/dev/vda</code> device:
<pre># mount -t proc /proc /mnt/proc
# mount --rbind /dev /mnt/dev
# mount --make-rslave /mnt/dev
# mount --rbind /sys /mnt/sys</pre>


# dd bs=440 count=1 conv=notrunc if=/mnt/usr/share/syslinux/mbr.bin of=/dev/vda
Then chroot in and use <code>grub-install</code> to install Grub.


== Unmounting the Volumes and Partitions ==
<pre># chroot /mnt
# source /etc/profile
# export PS1="(chroot) $PS1"</pre>


* Umount <code>/mnt/boot/</code> and <code>/mnt/</code>:
Install <code>GRUB2</code> for EFI and (optionally) remove syslinux:


# umount /mnt/boot/
<pre># apk add grub grub-efi efibootmgr
# umount /mnt/
# apk del syslinux</pre>


: {{Note|If you mounted further partitions or LVs below <code>/mnt/</code>, you must first unmount all of them before you can unmount <code>/mnt/</code>.}}
Edit {{Path|/etc/default/grub}} and add the following kernel options to the <code>GRUB_CMDLINE_LINUX_DEFAULT</code> parameter, replacing <UUID> with the UUID of the encrypted partition (in this case, <code>/dev/sda2</code>):


* Disable the swap partition:
<pre>cryptroot=UUID=<UUID> cryptdm=lvmcrypt</pre>


# swapoff -a
The <code>cryptroot</code> parameter sets the name of the device that contains the root file system. The <code>cryptdm</code> parameter sets the name of the mapping previously set in the <code>crypttab</code> file.


* Deactivate the VG:
<pre># (chroot) grub-install --target=x86_64-efi --efi-directory=/boot/efi
# (chroot) grub-mkconfig -o /boot/grub/grub.cfg
# (chroot) exit</pre>


# vgchange -a n
== Unmounting the Volumes and Partitions ==


* Close the <code>lvmcrypt</code> device:
Unmount the <code>/mnt/</code> partitions and reboot:


# cryptsetup luksClose lvmcrypt
<pre># cd
# umount -ql /mnt/dev
# umount -R /mnt
# reboot</pre>


* Reboot the system:
= Troubleshooting =


# reboot
== General Procedure ==


In case your system fails to boot, you can verify the settings and fix incorrect configurations.


Reboot and do the steps in [[#Preparing_the_Temporary_Installation_Environment|Prepare the temporary installation environment]] again.


Setup the LUKS partition and activate the LVs:


<pre># cryptsetup luksOpen /dev/sda2
# vgchange -ay</pre>


= Troubleshooting =
[[#Creating_and_Mounting_the_File Systems|Mount the file systems]]


== General Procedure ==
Verify that you run the steps described in the [[#Installing_Alpine_Linux|Installing Alpine Linux]] section correctly. Update the configuration if necessary, unmount the partitions, then reboot.


In case your system fails to boot, you can verify the settings and fix incorrect configurations:
== System can't find boot device ==


* [[#Preparing_the_Temporary_Installation_Environment|Prepare the temporary installation environment]]
This can be because you are using a GPT partition table on a motherboard that runs BIOS instead of UEFI, or you are running an MSDOS/MBR/Syslinux install without enabling legacy boot mode in the UEFI settings.


* Activate the VGs:
== Secure boot ==


# vgchange -a y
If secure boot complains of an unsigned bootloader, you can either disable it or adapt [https://wiki.archlinux.org/index.php/Secure_Boot this] guide to sign GRUB. If you're using Syslinux, then secure boot should be automatically disabled when you enable legacy boot mode.


* [[#Mounting_the_File_Systems|Mount the file systems]]
= Hardening =


* Verify that you run the steps described in the [[#Installing_Alpine_Linux|Installing Alpine Linux]] section correctly. Update the configuration if necessary.
* To harden, you should disable DMA[https://old.iseclab.org/papers/acsac2012dma.pdf] and install a hardened version of AES (TRESOR[https://www1.informatik.uni-erlangen.de/tresor] or Loop-Amnesia[http://moongate.ydns.eu/amnesia.html]) since by default cryptsetup with luks uses AES by default.
* Disable DMA in the BIOS and set the password for the BIOS according to Wikipedia.[https://en.wikipedia.org/wiki/DMA_attack]
* Blacklist kernel modules that use DMA and any unused expansion modules (FireWire, CardBus, ExpressCard, Thunderbolt, USB 3.0, PCI Express and hotplug modules) that use DMA.


* [[#Unmounting_the_Volumes_and_Partitions|Unmount the volumes and partitions]]
= See also =
*[[Bootloaders]]
*[[Alpine setup scripts]]
*[[Installing on GPT LVM]]
*[[Setting up LVM on GPT-labeled disks]]
*[[Setting up disks manually]]
*https://wiki.gentoo.org/wiki/Syslinux
*https://wiki.gentoo.org/wiki/GRUB2
*https://wiki.archlinux.org/index.php/Syslinux
*https://wiki.archlinux.org/index.php/GRUB
*https://wiki.gentoo.org/wiki/Sakaki's_EFI_Install_Guide


[[Category:Storage]]
[[Category:Storage]]
[[Category:Security]]
[[Category:Security]]

Revision as of 00:22, 30 December 2019

Introduction

This documentation describes how to set up Alpine Linux on a fully encrypted disk (apart from the bootloader's partition). We will have an LVM container installed inside an encrypted partition. To encrypt the partition containing the LVM volume group, dm-crypt (which is managed by the cryptsetup command) and its LUKS subsystem is used.

Note that your /boot/ partition must be non-encrypted to work with Syslinux. When using GRUB2 it is possible to boot from an encrypted partition to provide a layer of protection from Evil Maid attacks, but Syslinux doesn't support this.

Storage Device Name

To find your storage device's name, you could either install util-linux (apk add util-linux) and find your device using the lspci command, or you could make an educated guess by using BusyBox's blkid and df commands, and running ls /dev/sd* if you are installing to a USB, SATA or SCSI device, ls /dev/fd* for floppy disks and ls /dev/hd* for IDE (PATA) devices.

The following documentation uses the /dev/sda device as installation destination. If your environment uses a different device name for your storage device, use the corresponding device names in the examples.

Setting up Alpine Linux Using LVM on Top of a LUKS Partition

To install Alpine Linux in logical volumes running on top of a LUKS encrypted partition, you cannot use the official installation procedure. The installation requires several manual steps you must run in the Alpine Linux Live CD environment.

Preparing the Temporary Installation Environment

Before you begin to install Alpine Linux, prepare the temporary environment:

Boot the latest Alpine Linux Installation CD. At the login prompt, use the root user without a password to log in. Now we will follow the Setup-alpine script and make our changes along the way.

Run the scripts in this order:

# setup-keymap
# setup-hostname
# setup-interfaces
# rc-service networking start

If you are configuring static networking (you didn't configure any interfaces to use DHCP), run setup-dns.

# passwd
# setup-timezone
# rc-update add networking boot
# rc-update add urandom boot
# rc-update add acpid default
# rc-service acpid start

Edit your /etc/hosts to look like this, replacing <hostname> with your hostname and <domain> with your TLD (if you don't have a TLD, use 'localdomain':

Tip: The default text editor in BusyBox is vi (pronounced vee-eye).

Contents of /etc/hosts

127.0.0.1 <hostname> <hostname>.<domain> localhost localhost.localdomain ::1 <hostname> <hostname>.<domain> localhost localhost.localdomain


Note: In order to setup GRUB with UEFI, you are required to use the edge branch with the main and community repository. The reason for this is that efibootmgr is not available in the stable branch. If you do not want to switch completely over to edge you can do something called repository pinning. You will need to do this after the setup-apkrepos step.
# setup-apkrepos
# apk update
# setup-sshd
# setup-ntp

Now we will deviate from the install script.

Install the following packages required to set up LVM and LUKS:

Note: The parted partition editor is needed for advanced partitioning and GPT disklabels. BusyBox fdisk is a very stripped-down version with minimal functionality
# apk add lvm2 cryptsetup e2fsprogs parted

Optionally, if you want to overwrite your storage with random data first, install haveged, which is a random number generator based on hardware events and has a higher throughput than /dev/urandom:

# apk add haveged
# rc-service haveged start

Creating the Partition Layout

BIOS/MBR with DOS disklabel

We will be partitioning the storage device with a non-encrypted /boot partition for use with the Syslinux bootloader. Syslinux is meant for use with legacy BIOS and the MSDOS MBR partition table. Syslinux does support GPT partition tables but GRUB2 is the better option for UEFI.

+---------------------------+------------------------+-----------------------+
| Partition name            | Partition purpose      | Filesystem type       |
+---------------------------+------------------------+-----------------------+
| /dev/sda1                 | Boot partition         | ext4                  |
| /dev/sda2                 | LUKS container         | LUKS                  |
| |-> /dev/mapper/lvmcrypt  | LVM container          | LVM                   |
|  |-> /dev/vg01/root       | Root partition         | ext4                  |
|  |-> /dev/vg01/swap       | Swap partition         | swap                  |
+---------------------------+------------------------+-----------------------+
Warning: This will delete your previous partitioning table and make your data very hard to recover. If you want to dual boot, stop here and ask an expert.


Create an approx. 100MB partition to boot off, then assign the rest of the space to your LUKS partition.

# parted -a optimal
(parted) mklabel msdos
(parted) mkpart primary ext4 0% 100M
(parted) name 1 boot
(parted) set 1 boot on
(parted) mkpart primary ext4 100M 100%
(parted) name 2 crypto-luks

To view your partition table, type print while still in parted. Your results should look something like this:

(parted) print
Model: ATA TOSHIBA ******** (scsi)
Disk /dev/sda: 1000GB
Sector size (logical/physical): 512B/4096B
Partition Table: msdos
Disk Flags:

Number  Start   End     Size    Type     File system  Flags
 1      1049kB  99.6MB  98.6MB  primary  ext4         boot
 2      99.6MB  1000GB  1000GB  primary  ext4

UEFI with GPT disklabel

We will be encrypting the whole disk but the EFI system partition mounted at /boot/efi. This means that GRUB2 will decrypt the LUKS volume and load the kernel from there, preventing someone with physical access to your computer from maliciously installing a rootkit (or bootkit) in your boot partition while your computer is not already unlocked. The partitioning scheme will look like this:

+---------------------------+------------------------+-----------------------+
| Partition name            | Partition purpose      | Filesystem type       |
+---------------------------+------------------------+-----------------------+
| /dev/sda1                 | EFI system partition   | fat32                 |
| /dev/sda2                 | LUKS container         | LUKS                  |
| |-> /dev/mapper/lvmcrypt  | LVM container          | LVM                   |
|  |-> /dev/vg01/root       | Root partition         | ext4                  |
|  |-> /dev/vg01/boot       | Boot partition         | ext4                  |
|  |-> /dev/vg01/swap       | Swap partition         | swap                  |
+---------------------------+------------------------+-----------------------+
Warning: This will delete your previous partitioning table and make your data very hard to recover. If you want to dual boot, stop here and ask an expert.


Create an approx. 200MB EFI system partition, then assign the rest of the space to your LUKS partition.

# parted -a optimal
(parted) mklabel gpt
(parted) mkpart primary fat32 0% 200M
(parted) name 1 esp
(parted) set 1 esp on
(parted) mkpart primary ext4 200M 100%
(parted) name 2 crypto-luks

Optional: Overwrite LUKS Partition with Random Data

This should be done if your hard drive wasn't encrypted previously. It helps purge old, non-encrypted data and makes it harder for an attacker to work out how much data you have on your drive if they have access to the encrypted contents.

We will be using haveged as it is considerably faster than /dev/urandom when generating pseudo-random numbers (it's almost as high as /dev/zero in throughput), and is (supposedly) very close to truly random.

# haveged -n 0 | dd of=/dev/sda2

Encrypting the LVM Physical Volume Partition

To encrypt the partition which will later contain the LVM PV, you could either use the default settings (aes-xts-plain64 cipher with 256-bit key and Argon2 hashing with iter-time 2000ms), or you could use these settings which have added security with the trade-off being a non-noticeable decrease in performance in modern computers:

Default settings:

# cryptsetup luksFormat /dev/sda2

Optimized for security:

# cryptsetup -v -c serpent-xts-plain64 -s 512 --hash whirlpool --iter-time 5000 --use-random luksFormat /dev/sda2

Creating the Logical Volumes and File Systems

Open the LUKS partition:

# cryptsetup luksOpen /dev/sda2 lvmcrypt

Create the PV on lvmcrypt:

# pvcreate /dev/mapper/lvmcrypt

Create the vg0 LVM VG in the /dev/mapper/lvmcrypt PV:

# vgcreate vg0 /dev/mapper/lvmcrypt

LV Creation fro BIOS/MBR

This will create a 2GB swap partition and a root partition which takes up the rest of the space. This setup is for those who do not need to use the hibernate/suspend to disk state. If you do need to suspend to disk, create a swap partition slightly larger than the size of your RAM (change the size after # lvcreate -L).

# lvcreate -L 2G vg0 -n swap
# lvcreate -l 100%FREE vg0 -n root

The LVs created in the previous steps are automatically marked active. To verify, enter:

# lvscan

LV Creation for UEFI/GPT

This will create a 2GB swap partition, a 2GB boot partition and a root partition which takes up the rest of the space. This setup is for those who do not need to use the hibernate/suspend to disk state. If you do need to suspend to disk, create a swap partition slightly larger than the size of your RAM (change the size after # lvcreate -L).

# lvcreate -L 2G vg0 -n swap
# lvcreate -L 2G vg0 -n boot
# lvcreate -l 100%FREE vg0 -n root

The LVs created in the previous steps are automatically marked active. To verify, enter:

# lvscan

Creating and Mounting the File Systems

Format the root and boot LVs using the ext4 file system:

# mkfs.ext4 /dev/vg0/root

Format the swap LV:

# mkswap /dev/vg0/swap

Before you can install Alpine Linux, you must mount the partitions and LVs. Mount the root LV to the /mnt/ directory:

# mount -t ext4 /dev/vg0/root /mnt/

Next format your boot partition, create a mount point and mount it:

  • If you're using BIOS and MBR:
# mkfs.ext4 /dev/sda1
# mkdir -v /mnt/boot
# mount -t ext4 /dev/sda1 /mnt/boot
  • If you're using UEFI and GPT:
# apk add dosfstools
# mkfs.fat -F32 /dev/sda1
# mkfs.ext4 /dev/vg0/boot
# mkdir -v /mnt/boot
# mount -t ext4 /dev/vg0/boot /mnt/boot
# mkdir -v /mnt/boot/efi
# mount -t vfat /dev/sda1 /mnt/boot/efi

Lastly, activate your swap partition:

# swapon /dev/vg0/swap

Installing Alpine Linux

In this step you will install Alpine Linux in the /mnt/ directory, which contains the mounted file system structure:

# setup-disk -m sys /mnt/

The installer downloads the latest packages to install the base installation. Additionally, the installer automatically creates the entries for the mount points in /etc/fstab file, which is currently mounted in the /mnt/ directory.

Note: The automatic writing of the master boot record (MBR) fails in this step. You will write the MBR later manually to the disk.

To get the UUID of your storage device into a file for later use, use this command:

# blkid -s UUID -o value /dev/sda2 > ~/uuid

To enable the operating system to decrypt the PV at boot time, create the /mnt/etc/crypttab file. Enter the following line into the file to decrypt the /dev/sda2 partition using the luks module and map it to the lvmcrypt name:

lvmcrypt    UUID=<UUID>    none    luks
Tip: To easily read the UUID into this file so you don't have to type it manually, open it in vi, then type :r ~/uuid to load the UUID onto a new line.
Note: To enable TRIM append discard after luks in /mnt/etc/crypttab (coma separated). If LVM is being used you'll also need to change issue_discards to equal 1 in /mnt/etc/lvm.conf. You will then want to add a cron job for /sbin/fstrim to run periodically. Be aware that there are security risks involved when enabling TRIM with LUKS.


The swap LV is not automatically added to the fstab file. To add it manually, add the following line to the /mnt/etc/fstab file:

/dev/vg0/swap    swap    swap    defaults    0 0

Edit the /mnt/etc/mkinitfs/mkinitfs.conf file and append the cryptsetup module to the features parameter:

features="... cryptsetup"
Note: Alpine Linux uses the en-us keyboard mapping by default when prompting for the password to decrypt the partition at boot time. If you changed the keyboard mapping in the temporary environment and want to use it at the boot password prompt, be sure to also add the keymap feature to the list above.
Note: Check the output of mkinitfs -L and add the features necessary for your system to boot. You may need to add kms in order to see a password prompt at boot.


Rebuild the initial RAM disk:

# mkinitfs -c /mnt/etc/mkinitfs/mkinitfs.conf -b /mnt/ $(ls /mnt/lib/modules/)

The command uses the settings from the mkinitfs.conf file set in the -c parameter to generate the RAM disk. The command is executed in the /mnt/ directory and the RAM disk is generated using the modules for the installed kernel. Without setting the kernel version using the $(ls /mnt/lib/modules/) option, mkinitfs tries to generate the RAM disk using the kernel version installed in the temporary environment, which can differ from the latest one installed by the setup-disk utility.

Installing a bootloader

Syslinux with BIOS

Install the Syslinux package:

# apk add syslinux

Edit /mnt/etc/update-extlinux.conf and append the following kernel options to the default_kernel_opts parameter, replacing <UUID> with the UUID of /dev/sda2:

default_kernel_opts="... cryptroot=UUID=<UUID> cryptdm=lvmcrypt"

The cryptroot parameter sets the name of the device that contains the root file system, and the cryptdm parameter sets the name of the mapping previously set in crypttab.

Because the update-extlinux utility operates only on the /boot/ directory, temporarily change the root to the /mnt/ directory and update the boot loader configuration:

# chroot /mnt/
# update-extlinux
# exit
If an error occurs in the update-extlinux command you can most likely ignore it.

Write the MBR to the /dev/sda device:

# dd bs=440 count=1 conv=notrunc if=/mnt/usr/share/syslinux/mbr.bin of=/dev/sda

Grub with UEFI

Mount the required filesystems for the Grub EFI installer to the installation:

# mount -t proc /proc /mnt/proc
# mount --rbind /dev /mnt/dev
# mount --make-rslave /mnt/dev
# mount --rbind /sys /mnt/sys

Then chroot in and use grub-install to install Grub.

# chroot /mnt
# source /etc/profile
# export PS1="(chroot) $PS1"

Install GRUB2 for EFI and (optionally) remove syslinux:

# apk add grub grub-efi efibootmgr
# apk del syslinux

Edit /etc/default/grub and add the following kernel options to the GRUB_CMDLINE_LINUX_DEFAULT parameter, replacing <UUID> with the UUID of the encrypted partition (in this case, /dev/sda2):

cryptroot=UUID=<UUID> cryptdm=lvmcrypt

The cryptroot parameter sets the name of the device that contains the root file system. The cryptdm parameter sets the name of the mapping previously set in the crypttab file.

# (chroot) grub-install --target=x86_64-efi --efi-directory=/boot/efi
# (chroot) grub-mkconfig -o /boot/grub/grub.cfg
# (chroot) exit

Unmounting the Volumes and Partitions

Unmount the /mnt/ partitions and reboot:

# cd
# umount -ql /mnt/dev
# umount -R /mnt
# reboot

Troubleshooting

General Procedure

In case your system fails to boot, you can verify the settings and fix incorrect configurations.

Reboot and do the steps in Prepare the temporary installation environment again.

Setup the LUKS partition and activate the LVs:

# cryptsetup luksOpen /dev/sda2
# vgchange -ay

Mount the file systems

Verify that you run the steps described in the Installing Alpine Linux section correctly. Update the configuration if necessary, unmount the partitions, then reboot.

System can't find boot device

This can be because you are using a GPT partition table on a motherboard that runs BIOS instead of UEFI, or you are running an MSDOS/MBR/Syslinux install without enabling legacy boot mode in the UEFI settings.

Secure boot

If secure boot complains of an unsigned bootloader, you can either disable it or adapt this guide to sign GRUB. If you're using Syslinux, then secure boot should be automatically disabled when you enable legacy boot mode.

Hardening

  • To harden, you should disable DMA[1] and install a hardened version of AES (TRESOR[2] or Loop-Amnesia[3]) since by default cryptsetup with luks uses AES by default.
  • Disable DMA in the BIOS and set the password for the BIOS according to Wikipedia.[4]
  • Blacklist kernel modules that use DMA and any unused expansion modules (FireWire, CardBus, ExpressCard, Thunderbolt, USB 3.0, PCI Express and hotplug modules) that use DMA.

See also