Installation: Difference between revisions

From Alpine Linux
mNo edit summary
m (→‎Verifying the downloaded image-file: Replace ridiculous powershell only command with one that is available in any command interpreter on more versions of Windows.)
 
(450 intermediate revisions by 34 users not shown)
Line 1: Line 1:
Please do help with sorting out the current wiki documentation, as soon as exploring around the further pages gives you a grasp good enough to sort out the further things precisely and nicely as well.
[[Image:hdd_mount.png|left|link=]]
[[Image:hdd_mount.png|left|link=]]
<br />
<br />


This page exists to provide a basic overview to get started. Before actually installing, it can help to skim through the [[Alpine_Linux:FAQ| Frequently Asked Questions (FAQ)]], as well as to refer to the official installation guide at [https://docs.alpinelinux.org/ docs.alpinelinux.org].


{{Tip|This is a wiki!
If something isn't correct, or is incomplete, you will have to figure it out, or ask for the correct solution in the [https://alpinelinux.org/community/ community].


And then carefully edit the wiki page.


This page will get you started, but it may also help to skim through the entire [[Alpine_Linux:FAQ| Frequenty Asked Questions (FAQ)]].
Just as those before who did it for you.}}
== Typical Hardware Requirements ==


* At least 100 MB of RAM (A graphical desktop system may require up to 1 GB minimum.)
== Minimal Hardware Requirements ==
* A writable storage device. (Required for the "sys" or "data" runtime modes (see below). Optional for saving the configuration of systems running in "diskless" mode.)
{{Main|Requirements}}
* At least 128 MB of RAM. [A graphical desktop system may require up to 512 minimum.]. Note that an installation itself (from ISO) generally requires at least 320 MB during installation.
* At least 0-700 MB space on a writable storage device. [Only required in "sys" or "data" mode installations (explained below). It is optional in "diskless" mode, where it may be used to save newer data and configurations states of a running system.]


== Installation Overview ==
== Installation Overview ==
(To install on ARM systems that do not support .iso images refer to [[Alpine_on_ARM|Alpine on ARM]] instead.)


As with most linux distributions, the first installation steps usually consist of:<br>
=== The general course of action ===
([[Installation#additional details|additional details]] below)
{{Note|
* For single-board-computer (SBC) architectures which can not boot .iso images, see [[Alpine_on_ARM|Alpine on ARM]] for peculiarities.
* For headless system, initial network setup may be fed by pre-built <code>apkovl</code> overlay file, custom-made or via [https://github.com/macmpi/alpine-linux-headless-bootstrap/ 3rd party]}}


As usual, starting an installation procedure requires some basic steps (additional details for all the steps follow [[Installation#Basic Installation Step Details|below]]):<br>


'''1.)''' Downloading and verifying the proper [http://alpinelinux.org/downloads stable-release ISO image] for your computer's architecture, and the corresponding <code>sha256</code> (checksum) and <code>GPG</code> (signature) files.  
# Downloading and verifying the proper [https://alpinelinux.org/downloads/ stable-release ISO installation image-file] for the target computer's architecture with their corresponding <code>sha256</code> (checksum) and <code>GPG</code> (signature) files.
# Preparing the installation media (e.g.: CD, DVD, USB drive, SD Card, etc).
# Optionally, custom-made headless apkovl can be done by first booting the install media on some computer with a display and keyboard attached, or in a virtual machine, and doing an intermediate "diskless" setup of just the boot media (more details below), i.e. using the offical <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> to configure the system's network, possibly for dhcp if needed, a ssh server, and a login user. Choosing "disks=none" for now, yet, configure to store configs on the boot media (if it is writable, otherwise on a separate storage media). And afterwards calling <code>[[Alpine_local_backup|lbu commit]]</code> to store the configs as local backup. Then your completed setup, including its securely created own private keys, will readily get (re)loaded on every subsequent (headless) boot from your custom-build <code><hostname>.apkovl.tar.gz</code> stored on the boot media (or on an auxilary media or server location, in case the boot media is read-only).
# Booting the target computer from the prepared disk or storage device.


'''2.)''' Either burning the ISO image onto a blank CD/DVD/Blue-ray disk with your favorite disk burning software, or flashing the image onto a bootable storage device (USB-device, CF-/MMC-/SD-card, floppy, ...).
The boot process of the alpine installation image first copies the entire operating system into the RAM memory, and then already starts a complete Alpine Linux system from there. It will initially only provide a basic command line environment that does not depend on reading from any (possibly slow) initial boot media, anymore.


'''3.)''' Booting the computer from the prepared disk or storage device.
Local log-in is possible as the user <code>root</code>. Initially, the root user has no password.


At the command prompt, an interactive script named <code>setup-alpine</code> is available to configure and install the initial Alpine Linux system.


The boot process first copies the entire system into the RAM memory, and then runs it completely from RAM. So that the started command line environment does not depend on reading from the (slow) initial boot media anymore.
The question-and-answer dialog of <code>setup-alpine</code> takes care of the base configuration and allows to configure the system to boot into one of three different '''Alpine Linux "disk" modes''': '''"diskless"'''(none), '''"data"''', or '''"sys"'''.


Log-in as the user <code>root</code> with its initially empty password.
These modes are explained in more detail in the following subsections.


Now an interactive script called <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code>, as well as more specific [[Alpine_setup_scripts|setup-scripts]], the [[Alpine_Linux_package_management|apk package manager]], and all the general command line tools of course, can be used to configure the initial Alpine Linux system, install further packages, and prepare the system for the next boot.
{{Note|It is really helpful for many cases that it is possible to first only complete a basic setup of the initial "diskless" installation media in order to prepare for the installation of the target system. For example, also to download and install some specific driver or software tool. And to possibly use more specific [[Alpine_setup_scripts|setup-scripts]] afterwards in order to proceed with the final installation in a custom way. A most basic pre-setup of just the "diskless" system may be completed by running <code>setup-alpine</code> and answering "none" when asked for the disk to use, for where to store configs, and for the location of the package cache.


Note that <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> supports to configure the system to boot into one of three general '''Alpinelinux runtime modes''':
Examples of preparation options:


'''diskless mode''' This is the default boot mode of the .iso images. <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> configures this if selecting to install to "disk=none", and it means that the whole  operating system and the applications run extremely fast from within RAM (saving unnecessary disk spin-ups, power and wear). A customized configuration and package selection may still be completely preserved on permanent storage media by using the "local backup utility" <code>[[Alpine_local_backup|lbu]]</code> and a [[Alpine_Linux_package_management#Local_Cache|local package cache]]. [Fixme: <code>setup-alpine</code> still needs [[Alpine_local_backup#Saving_and_loading_ISO_image_customizations| this detour]] to prepare a partition for this:] In setup-alpine, select to store configs and the package cache on a partition. (That mounted partition may later also be used by configuring some important applications to keep their data on it.)
* Preparing a custom partitioning or filesystem scheme that avoids to use and/or overwrite an entire disk ([[Installation#Custom_partitioning_of_the_harddisk|details below]]).
* Installing something that may be missing in the live system to configure the hardware, e.g. by using the alpine package manager <code>[[Alpine_Package_Keeper|apk]]</code>.


'''data mode''' This mode is still accelerated by running the system from RAM, however swap storage and the whole {{Path|/var}} directory tree gets mounted from a persistent storage device (two newly created partitions). This location holds e.g. all log files, mailspools, databases, etc., as well as <code>[[Alpine_local_backup|lbu]]</code> backup commits and the package cache. The mode is useful for having RAM accelerated servers with amounts of variable user-data that exceed the available RAM size, and to let the entire current system state (not just the boot state) survive a system crash according to the particular filesystem's guarantees. [Fixme: Storing lbu configs to disk is not auto-configured after configuring the data partition, one still has to select saving configs to "none" first (the new data partition is not listed), and to manually set e.g. LBU_MEDIA=sda2 in /etc/lbu/lbu.conf and <code>echo "/dev/sda2 /media/sda2 vfat rw 0 0" >> /etc/fstab</code> afterwards.] The boot device may remain to be the one initially used, and can even be immutable (read-only).
Examples of proceeding options:


'''sys mode''' This is a traditional hard-disk install. If this mode is selected, the <code>[[setup-alpine]]</code> script defaults to create three partitions on the selected storage device, {{Path|/boot}}, {{Path|swap}} and {{Path|/}} (the filesystem root). This mode may be used for generic [[Desktops|desktop]] and development machines, for example.
* <code>[[Alpine_setup_scripts#setup-lbu|setup-lbu]]</code> to configure a "local backup" location for the diskless system, and <code>[[Alpine_local_backup|lbu commit]]</code> to then save the local configuration state.
* <code>[[Alpine_setup_scripts#setup-apkcache|setup-apkcache]]</code> to configure a local package cache storage location.
* <code>[[Alpine_setup_scripts#setup-disk|setup-disk]]</code> to add a "data" mode partition, or do a classic full install of the "diskless" system onto a "sys" disk or partition.


== Questions asked by <code>setup-alpine</code> ==
There are many more [[Alpine_setup_scripts|setup-scripts]] available. All these tools may also be run later to adjust specific configurations. For example, to set up a graphical environment as covered under [[Installation#Post-Installation|Post-Installation]] below.
}}


The <code>[[setup-alpine]]</code> script offers to configure:
==='''Diskless Mode'''===
This means the entire operating system with all applications are first loaded into RAM and then only run from there. This is the method already used to boot the .iso installation images, however <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> can also configure the installed system to continue to boot like this if "disk=none" is specified. The mode is extremely fast and can save on unnecessary disk spin-ups, power, and wear. It is similar to what other linux distributions may call a "frugal" install or boot into with a "toram" option.


* Keyboard map (e.g. ''us'' and variant of ''us-nodeadkeys'')
Custom configurations and package installations may optionally still be preserved or "persist" across reboots by using the Alpine local backup tool <code>[[Alpine_local_backup|lbu]]</code>. It enables committing and reverting system states by using .apkovl files that are saved to writable storage and loaded when booting. If additional or updated packages have been added to the system, these may also be made available for automatic (re)installation during the boot phase without any (re)downloading, by enabling a [[Alpine_Package_Keeper#Local_Cache|local package cache]] on the writable storage.
* Hostname (The name for the computer.)
* Network (e.g. automatic DHCP IP address discovery)
* DNS Servers (For privacy reasons, it is NOT recommended to use servers like google's 8.8.8.8 etc.)
* Timezone
* Proxy ("None" for direct connections to the internet.)
* SSH (Openssh is part of the default images.)
* NTP (Chrony is part of the default images.)
* Runtime Mode (Select between "diskless" (disk=none), "data" or "sys", all described above.)


== Additional Details ==
[[https://gitlab.alpinelinux.org/alpine/alpine-conf/-/issues/10473 FIXME-1]: Storing local configs and the package cache on '''internal disks still require''' [[Alpine_local_backup#Saving_and_loading_ISO_image_customizations|some manual steps]] to have the partition listed, i.e. making a /etc/fstab entry, mountpoint, and mount, *before* running setup-alpine. The linked workaround also still requires to commit these configurations to disk manually before rebooting.]


{{Expand|  }}
If a writable partition is available, <code>setup-alpine</code> can be told to store the configs and the package cache on that writable partition. (Later, another directory on that same partition or another available partition may also be mounted as /home, or for example, for selected important applications to keep their run-time and user data on it.)


This "Additional Details" section needs to be consolidated with the work at '''[https://docs.alpinelinux.org https://docs.alpinelinux.org] (not finished)'''
The boot device of the newly configured local "diskless" system may remain the initial (and possibly read-only) installation media. But it is also possible to copy the boot system to a partition (e.g. /dev/sdXY) with <code>[[Alpine_setup_scripts#setup-bootable|setup-bootable]]</code>.
(Restructuring things there, moving and linking from here or there?).  


=== Verifying the downloaded image file ===
==='''Data Disk Mode'''===
This mode also runs from system RAM, thus it enjoys the same accelerated operation speed as "diskless" mode. However, swap storage and the entire {{Path|/var}} directory tree get mounted from a persistent storage device (two newly created partitions). The directory {{Path|/var}} holds e.g. all log files, mailspools, databases, etc., as well as <code>[[Alpine_local_backup|lbu]]</code> backup commits and the package cache. This mode is useful for having RAM accelerated servers with variable amounts of user-data that exceed the available RAM size. It enables the entire current system state (not just the boot state) to survive a system crash in accordance with the particular filesystem guarantees.
 
[[https://gitlab.alpinelinux.org/alpine/alpine-conf/-/issues/10474 FIXME-2]]: Setup-alpine will create the data partition and mount it as /var, but '''setup-alpine's "data" disk mode can not yet configure lbu config storage settings automatically'''. The '''current workaround''', is to select "none" at the 'where to store configs' prompt (as the new data partition is not listed anyway) and configure lbu manually after <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> exits, and before rebooting:
 
# Identify the created data partition, e.g. <code>/dev/sd''XY''</code>, and its filesystemtype, e.g. using <code>''lsblk''</code>
# Manually edit the lbu backups location in <code>/etc/lbu/lbu.conf</code> and configure <code>LBU_MEDIA=sd''XY''</code> (according to the previous findings).
# Save the configuration on that partition for the next boot with <code>lbu commit</code>.
# If (a new) partition fails to get mounted, execute: <code>mkdir /media/''sdXY'' ; echo "/dev/sd''XY'' /media/sd''XY'' ''fstype'' noauto,rw 0 0" >> /etc/fstab</code>, and try <code>lbu commit</code> again.
 
In data disk mode, the boot device may also remain the initial (and possibly read-only) installation media, or be copied to a partition (e.g. /dev/sdXY) with <code>[[Alpine_setup_scripts#setup-bootable|setup-bootable]]</code>.
 
==='''System Disk Mode'''===
This is a traditional hard-disk install.
 
If this mode is selected, the <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> script creates three partitions on the selected storage device, {{Path|/boot}}, {{Path|swap}} and {{Path|/}} (the filesystem root). This mode may, for example, be used for generic [[:Category:Desktop|desktop]] and development machines.
 
For custom partitioning, see [[Setting up disks manually]].
 
To install along side another operating systems, see [[Dualbooting]].
 
== Preparing for the installation ==
 
{{Note|This "Additional Details" section needs to be consolidated with the work at '''[https://docs.alpinelinux.org https://docs.alpinelinux.org] (not finished)'''
(Restructuring things there, moving and linking from here or there?).}}
 
=== Verifying the downloaded image-file ===


{|  class="wikitable" style="width:95%; align=center"
{|  class="wikitable" style="width:95%; align=center"
|+ Commands to verify the checksum and GPG signature of a downloaded image file on different systems.
|+ Commands to verify the checksum and GPG signature of a downloaded image-file on different systems.
|-
|-
! width=100px |  OS type
! width=100px |  OS type
!  <code>sha265</code> check !! <code>sha265</code> calculation (to be compared manually) !! <code>GPG</code> signature verification
!  <code>SHA256</code> check !! <code>SHA256</code> calculation (to be compared manually) !! <code>GPG</code> signature verification
|-
|-
! Linux
! Linux
Line 73: Line 105:
<code> gpg --verify alpine-<version>.iso.asc alpine-<version>.iso</code>
<code> gpg --verify alpine-<version>.iso.asc alpine-<version>.iso</code>
|-
|-
! Windows (PowerShell installed)
! MACOS 
|                 - ? -             || <code>Get-FileHash .\alpine-<image-version>.iso -Algorithm SHA256</code> || - ? -
| - ? - || <code>shasum -a 256 alpine-*.iso</code> || - ? -
|-
! OpenBSD 
| <code>sha256 -C alpine-*.sha256 alpine-*.iso</code> ||        || <code>doas pkg_add gnupg;
ftp -o - https://alpinelinux.org/keys/ncopa.asc &#124; gpg --import ;
gpg --verify alpine-<version>.iso.asc alpine-<version>.iso</code>
|-
! FreeBSD 
| - ? - || <code>/usr/local/bin/shasum -a 256 alpine-*.iso</code> || - ? -
|-
! NetBSD 
| - ? - || <code>/usr/local/bin/shasum -a 256 alpine-*.iso</code> || - ? -
|-
! Windows
|                - ? -            || <code>certutil -hashfile alpine-*.iso SHA256</code> || - ? -
|}
|}
=== Flashing (direct data writing) the installation image-file onto a device or media  ===
{{Seealso|Burning ISOs}}
{{Note|These instructions are exclusively for x86_64 and x86. For ARM boards, see [[Alpine on ARM#Preparing installation media]].}}
==== Unix/Linux ====
Under Unix (and thus Linux), "everything is a file" and the data in the image-file can be written to a device or media with the <code>dd</code> command. Afterward, executing the <code>eject</code> command removes the target device from the system and ensures the write cache is completely flushed.
{{Cmd|dd if{{=}}<iso-file-to-read-in> of{{=}}<target-device-node-to-write-out-to> bs{{=}}4M; eject <target-device-node-to-write-to>}}
Be careful to correctly identify the target device as any data on it '''will''' be lost! All connected "bulk storage devices" can be listed with <code><nowiki>lsblk</nowiki></code> and <code><nowiki>blkid</nowiki></code>.
# lsblk
NAME            MAJ:MIN RM  SIZE RO TYPE  MOUNTPOINT
sdX              0:0    0  64,0G  0 disk 
├─sdX1            0:1    0    2G  0 part 
└─sdX2            0:2    0    30G  0 part  /mnt/sdX2
# blkid
/dev/sdX1: LABEL="some" UUID="..." TYPE="vfat"
/dev/sdX2: LABEL="other" UUID="..." TYPE="ext4"
For example, if /dev/sdX is the desired target device, first make sure you un-mount all mounted partitions of the target device. For example sdX1 and sdX2:
{{Cmd|umount /dev/sdX1 /dev/sdX2}}
For <code>dd</code>'s output-file (<code>of=</code>), however, do '''not''' specify a partition number. For example, write to sdX, '''not''' sdX1:
Warning: '''This will overwrite the target device /dev/sdX''', so before executing, make sure you have a backup of the data if you can't afford to lose it.
{{Cmd|dd if{{=}}~/Downloads/alpine-standard-3.00.0-x86_64.iso of{{=}}/dev/sdX bs{{=}}4M; eject /dev/sdX}}
==== Windows ====
For example, there is the [https://rufus.ie/ Rufus] program. Rufus will enable you to create bootable USB flash drives under Windows.
Rufus has been tested and works for Alpine Linux 3.12.x with the following settings:
* '''Partition scheme''': <code>MBR</code>
* '''Target system''': <code>BIOS or UEFI</code>
* '''File system''': <code>FAT32</code>
* '''Cluster size''': <code>4096 bytes (default)</code>
===  Verifying the written installation media ===
After detaching and re-attaching the device, a bit-wise comparison can verify the data written to the device (instead of just data buffered in RAM). If the comparison terminates with an end-of-file error on the .iso file side, all the contents from the image have been written (and re-read) successfully:
# cmp ~/Downloads/alpine-standard-3.00.0-x86_64.iso /dev/sdX
cmp: EOF on alpine-standard-3.00.0-x86_64.iso


=== Booting from external devices ===
=== Booting from external devices ===


Insert the boot media to a proper drive or port of the computer, while it is turned off, and turn the machine on.
Insert the boot media to a proper drive or port of the computer and turn the machine on, or restart it, if already running.


If the computer does not automatically boot from the desired device, one needs to bring up the boot menu selection for choosing the media to boot from. Depending on the computer the menu may be accessed by quickly (repeatedly) pressing a key when booting starts, or sometimes it is needed to press the button before starting the computer and keep holding it when it boots. Typical keys are:  `F9`-`F12`, sometimes `F7`, `F8` or F9`. If they don't work, it may be necessary to enter the BIOS configuration and adjust the boot settings, for which typical keys are: `Del.` `F2` `F3` or `Esc.`
If the computer does not automatically boot from the desired device, one needs to bring up the boot menu and choose the media to boot from. Depending on the computer, the menu may be accessed by repeatedly pressing a key quickly when booting starts. Some computers require that you press the button ''before'' starting the computer and hold it down while the computer boots. Typical keys are:  {{key|F9}}-{{key|F12}}, sometimes {{key|F7}} or {{key|F8}}. If these don't bring up the boot menu, it may be necessary to enter the BIOS configuration and adjust the boot settings, for which typical keys are: {{key|Del}} {{key|F1}} {{key|F2}} {{key|F6}} or {{key|Esc}}.


== Installation Step Details ==
=== Custom partitioning of the harddisk ===
It is possible to specify configurations for RAID, encryption, LVM, etc. as well as manual partitioning.
For "diskless" or "data disk" mode installs, manual partitioning may be needed to prepare the harddisk for committing local backups of the system state with <code>[[Alpine_local_backup|lbu commit]]</code>, to have a place for a package cache, or to use it for a /var mount.
For a "sys" install, custom partitioning is needed only if the desired scheme differs from overwriting an entire disk, or using the default set of a /boot, swap and root partition on the disk.
See [[Setting up disks manually]] for the alpine options for RAID, encryption, LVM, etc. and manual partitioning.
=== Questions asked by <code>setup-alpine</code> ===
[[File:Installation-alpine-alpine-setup-3-setup-scripts.png|350px|thumb|right|Example <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> session]]
The <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> script offers the following configuration options:
* '''Keyboard Layout''' (Local keyboard language and usage mode, e.g. ''us'' and variant of ''us-nodeadkeys''.)
* '''Hostname''' (The name for the computer.)
* '''Network''' (For example, automatic IP address discovery with the "DHCP" protocol.)
* '''DNS Servers''' (Domain Name Servers to query. If unsure, leave DNS domain name blank and using <code>[https://quad9.net/ 9.9.9.9 2620:fe::fe]</code> for DNS is typically adequate.)
* '''Root password''' (the password used to login to the root account)
* '''Timezone''' (Optionally display times/dates in your local time zone)
* '''HTTP/FTP Proxy''' (Proxy server to use for accessing the web/ftp. Use "none" for direct connections to websites and FTP servers.)
* '''Mirror''' (From where to download packages. Choose the organization you trust giving your usage patterns to.)
* '''Setup a user''' (Setting up a regular user account)
* '''SSH''' (Secure SHell remote access server. "OpenSSH" is part of the default install image. Use "none" to disable remote login, e.g. on laptops.)
* '''Disk Mode''' (Select between diskless (disk="none"), "data" or "sys", as described above.)
{{Warning|The data on a chosen device will be overwritten!}}
* '''NTP''' (Network Time Protocol client used for keeping the system clock in sync with a time server. Package "chrony" is part of the default install image.)
=== Preparing for the first boot ===
If <code>[[Alpine_setup_scripts#setup-alpine|setup-alpine]]</code> has finished configuring the "sys" disk mode, the system should be ready to reboot right away (see next subsection).
If the new local system was configured to run in "diskless" or "data" mode, and you do not want keep booting from the initial (and possibly read-only) installation media, the boot system needs to be copied to another device or partition.
The target partition may be identified using {{ic|lsblk}} (after installing it with {{ic|apk add {{pkg|lsblk}}}}) and/or {{ic|blkid}}, similar to previously identifying the initial installation media device.
The procedure to copy the boot system is explained at [[Alpine_setup_scripts#setup-bootable|setup-bootable]]
Once everything is in place, save your customized configuration with {{ic|lbu commit}} before rebooting.


=== Rebooting and testing the new system ===
=== Rebooting and testing the new system ===


After the installation is completed, the system may be power-cycled or rebooted to confirm that everything is working.
First, remove the initial installation media from the boot drive, or detach it from the port it's connected to.
If the configured runtime mode was "sys", then remove the initial installation media to boot the newly installed system.
 
The system may now be power-cycled or rebooted to confirm everything is working correctly.
 
The relevant commands for this are {{ic|poweroff}} or {{ic|reboot}}.
 
=== Completing the installation ===
 
The installation script installs only the base operating system. '''No''' applications e.g. web server, mail server, desktop environment, or web browsers are installed.
 
Please look under [[Installation#Post-Installation|Post-Installation]] below, for some common things to do after installation.


The relevant commands for this are <code>reboot</code> or  <code>poweroff</code>.
= Further Installation Instructions =


= Further Documentation =
{{Note| Specific topics should be kept on separate, individually manageable topic-pages and only get listed with a direct reference (link) on this general page.}}


=== Installing ===
=== Installation ===


* [[Kernels]] ''(kernel selection, e.g. for VMs or RPi)''
* [[How to make a custom ISO image with mkimage]] ''(installation media with its own configuration)''
* [[Directly booting an ISO file]] ''(without flashing it to a disk or device)''
* [[Directly booting an ISO file]] ''(without flashing it to a disk or device)''
* [[Tutorials_and_Howtos#Networking|Setting up Networking]] ''(incl. non-standard configurations)''
* [[Dualbooting|Dual/multi-boot install to HDD partition]]
* [[Netboot Alpine Linux using iPXE]]
Also see other [[:Category:Installation|Installation Category]] pages.
 
=== Post-Installation ===
 
<!-- COMMENT FOR EDITORS


If you edit Post-Install,


=== Post-Install ===
  * Consider that there are already [[Tutorials_and_Howtos#Post-Install]], [[Developer_Documentation#Package_management]] and the Handbook, please work towards reducing duplication and providing an overview, and maintaining topic details of considerable size on their own pages.
  * Here, only the most relevant jumping off points are listed, not exact list duplicates!!!
  * Keep short-list of links here, as overview to more detailed topic specific pages.
  * Don't aggregate different topics at yet another place.


<!-- If you edit post-install, also consider [[Tutorials_and_Howtos#Post-Install]], [[Developer_Documentation#Package_management]] and the Handbook. These are not exact duplicates. -->
-->




* [[Setting up a new user]]


* [[Enable Community Repository]] ''(Providing additional packages)''
* [[Setting up a new user]] ''(to allow remote, console, or graphical logins)''
* [[Alpine Linux package management|Package Management (apk)]] ''(general search/add/del packages etc.)''
* [[Tutorials_and_Howtos#Networking_2|Setting up Networking]] ''(including non-standard configurations)''
* [[Alpine setup scripts#setup-xorg-base|<code>setup-xorg-base</code>]] ''(display graphics, if required)''
* [[Alpine_Package_Keeper|Package Management (apk)]] ''(how to search/add/del packages etc.)''
** [[Xfce_Setup]] / [[Desktop-notes]] / [[Xfce_Desktop]]
** [[Alpine_Package_Keeper#Upgrade_a_Running_System|Upgrading Alpine]] ''(checking for and installing updates)''
** [[Repositories#Managing_repositories|Enable the community repository]] ''(access to additional packages)''
* [[Alpine_Linux:FAQ#Why_don.27t_I_have_man_pages_or_where_is_the_.27man.27_command.3F|man command/man pages]]
* [[Change default shell]]
* [[Running glibc programs]] ''(installation and development)''
<br>


* [[Alpine_local_backup|Local backup utility <code>lbu</code>]] ''(persisting RAM system configurations)''
* [[Alpine_local_backup|Local backup utility <code>lbu</code>]] ''(persisting RAM system configurations)''
** [[Back Up a Flash Memory Installation]] ''("diskless mode" systems)''
** [[Back Up a Flash Memory Installation]] ''("diskless mode" systems)''
** [[Manually_editing_a_existing_apkovl]] ''(the stored custom configs)''
** [[Manually editing a existing apkovl]] ''(the stored custom configs)''
* [[Alpine Linux Init System|Init System (OpenRC)]] ''(Configure a service to automatically boot at next reboot)''
<br>
 
* [[OpenRC|Init System (OpenRC)]] ''(configure a service to automatically boot at next reboot)''
** [[Writing Init Scripts]]
** [[Multiple Instances of Services]]
** [[Multiple Instances of Services]]
** [[Writing Init Scripts]]
<br>
 
* [[Alpine setup scripts#setup-xorg-base|<code>setup-xorg-base</code>]] ''(setup graphical base environment)''
** [[Tutorials_and_Howtos#Desktop|Desktop Environments]]
<br>


* [[Hosting services on Alpine]] ''(Links to several mail/web/ssh server setup pages)''
* [[Hosting services on Alpine]] ''(links to several mail/web/ssh server setup pages)''
* Runnig programs and services in their own [[Firejail Security Sandbox]]
<br>


* [[Alpine_Linux_package_management#Upgrade_a_Running_System|Upgrading Alpine]] ''(checking for and installing updates)''
* [[How to get regular stuff working]] ''(things one may miss in a too lightweight installation )''
* Running applications and services in their own [[Firejail Security Sandbox]]


=== Further Help and Information ===
=== Broader Usage Guides ===


* [[Running glibc programs]] ''(Installation and development)''
* See: [[Tutorials and Howtos]]


<!-- * [[setup-acf]] ''(Configures ACF (webconfiguration) so you can manage your box through https)''
= General Documentation =
* [[Changing passwords for ACF|Changing passwords]]
-->


* [[FAQ|FAQs]]
{{Tip| Alpine Linux packages stay close to the upstream design. Therefore, all upstream documentation about configuring a software package, as well as good configuration guides from other distributions that stay close to upstream, e.g. those in the [https://wiki.archlinux.org/ ArchWiki], are to a large degree, also applicable to configuring the software on Alpine Linux, thus can be very useful.}}
* [[Tutorials and Howtos]]


* [[Contribute|How to Contribute]]
* [[Alpine_Linux:FAQ|FAQs]]
* [[Alpine_Linux:Contribute|How to Contribute]]
* [[Developer Documentation]]
* [[Developer Documentation]]
* [[Alpine_Linux:Wiki_etiquette|Wiki etiquette]] to collaborate on this documentation
* [[Alpine_Linux:Wiki_etiquette|Wiki etiquette]] ''(to collaborate on this documentation)''
 
* [[Comparison with other distros]] ''(how common things are done on Alpine)''
 
{{Tip| Alpine linux packages stay close to the upstream design. Therefore, all upstream documentation about configuring a software package, as well as good configuration guides from other distributions that stay close to upstream, like e.g. in the [https://wiki.archlinux.org/ Arch Wiki], are to a large degree also well applicable to configure the software on alpine linux, thus can be very useful.}}
 
= See Also =
 
There may still be something useful to find and sort out of the newbie's install notes in this wiki, moving godd things into the structured handbook style documentation.
 
# [[Newbie_Alpine_Ecosystem]]
# [[Alpine newbie install manual]]
# [[Alpine_newbie#Install|Alpine_newbie Install section]]
# [https://mckayemu.github.io/alpineinstalls/ https://mckayemu.github.io/alpineinstalls/ All informatin for Spanish users]


----
[[Category:Installation]]
[[Category:Installation]]

Latest revision as of 11:27, 22 January 2024


This page exists to provide a basic overview to get started. Before actually installing, it can help to skim through the Frequently Asked Questions (FAQ), as well as to refer to the official installation guide at docs.alpinelinux.org.

Tip: This is a wiki!

If something isn't correct, or is incomplete, you will have to figure it out, or ask for the correct solution in the community.

And then carefully edit the wiki page.

Just as those before who did it for you.

Minimal Hardware Requirements

  • At least 128 MB of RAM. [A graphical desktop system may require up to 512 minimum.]. Note that an installation itself (from ISO) generally requires at least 320 MB during installation.
  • At least 0-700 MB space on a writable storage device. [Only required in "sys" or "data" mode installations (explained below). It is optional in "diskless" mode, where it may be used to save newer data and configurations states of a running system.]

Installation Overview

The general course of action

Note:
  • For single-board-computer (SBC) architectures which can not boot .iso images, see Alpine on ARM for peculiarities.
  • For headless system, initial network setup may be fed by pre-built apkovl overlay file, custom-made or via 3rd party

As usual, starting an installation procedure requires some basic steps (additional details for all the steps follow below):

  1. Downloading and verifying the proper stable-release ISO installation image-file for the target computer's architecture with their corresponding sha256 (checksum) and GPG (signature) files.
  2. Preparing the installation media (e.g.: CD, DVD, USB drive, SD Card, etc).
  3. Optionally, custom-made headless apkovl can be done by first booting the install media on some computer with a display and keyboard attached, or in a virtual machine, and doing an intermediate "diskless" setup of just the boot media (more details below), i.e. using the offical setup-alpine to configure the system's network, possibly for dhcp if needed, a ssh server, and a login user. Choosing "disks=none" for now, yet, configure to store configs on the boot media (if it is writable, otherwise on a separate storage media). And afterwards calling lbu commit to store the configs as local backup. Then your completed setup, including its securely created own private keys, will readily get (re)loaded on every subsequent (headless) boot from your custom-build <hostname>.apkovl.tar.gz stored on the boot media (or on an auxilary media or server location, in case the boot media is read-only).
  4. Booting the target computer from the prepared disk or storage device.

The boot process of the alpine installation image first copies the entire operating system into the RAM memory, and then already starts a complete Alpine Linux system from there. It will initially only provide a basic command line environment that does not depend on reading from any (possibly slow) initial boot media, anymore.

Local log-in is possible as the user root. Initially, the root user has no password.

At the command prompt, an interactive script named setup-alpine is available to configure and install the initial Alpine Linux system.

The question-and-answer dialog of setup-alpine takes care of the base configuration and allows to configure the system to boot into one of three different Alpine Linux "disk" modes: "diskless"(none), "data", or "sys".

These modes are explained in more detail in the following subsections.

Note: It is really helpful for many cases that it is possible to first only complete a basic setup of the initial "diskless" installation media in order to prepare for the installation of the target system. For example, also to download and install some specific driver or software tool. And to possibly use more specific setup-scripts afterwards in order to proceed with the final installation in a custom way. A most basic pre-setup of just the "diskless" system may be completed by running setup-alpine and answering "none" when asked for the disk to use, for where to store configs, and for the location of the package cache.

Examples of preparation options:

  • Preparing a custom partitioning or filesystem scheme that avoids to use and/or overwrite an entire disk (details below).
  • Installing something that may be missing in the live system to configure the hardware, e.g. by using the alpine package manager apk.

Examples of proceeding options:

  • setup-lbu to configure a "local backup" location for the diskless system, and lbu commit to then save the local configuration state.
  • setup-apkcache to configure a local package cache storage location.
  • setup-disk to add a "data" mode partition, or do a classic full install of the "diskless" system onto a "sys" disk or partition.

There are many more setup-scripts available. All these tools may also be run later to adjust specific configurations. For example, to set up a graphical environment as covered under Post-Installation below.

Diskless Mode

This means the entire operating system with all applications are first loaded into RAM and then only run from there. This is the method already used to boot the .iso installation images, however setup-alpine can also configure the installed system to continue to boot like this if "disk=none" is specified. The mode is extremely fast and can save on unnecessary disk spin-ups, power, and wear. It is similar to what other linux distributions may call a "frugal" install or boot into with a "toram" option.

Custom configurations and package installations may optionally still be preserved or "persist" across reboots by using the Alpine local backup tool lbu. It enables committing and reverting system states by using .apkovl files that are saved to writable storage and loaded when booting. If additional or updated packages have been added to the system, these may also be made available for automatic (re)installation during the boot phase without any (re)downloading, by enabling a local package cache on the writable storage.

[FIXME-1: Storing local configs and the package cache on internal disks still require some manual steps to have the partition listed, i.e. making a /etc/fstab entry, mountpoint, and mount, *before* running setup-alpine. The linked workaround also still requires to commit these configurations to disk manually before rebooting.]

If a writable partition is available, setup-alpine can be told to store the configs and the package cache on that writable partition. (Later, another directory on that same partition or another available partition may also be mounted as /home, or for example, for selected important applications to keep their run-time and user data on it.)

The boot device of the newly configured local "diskless" system may remain the initial (and possibly read-only) installation media. But it is also possible to copy the boot system to a partition (e.g. /dev/sdXY) with setup-bootable.

Data Disk Mode

This mode also runs from system RAM, thus it enjoys the same accelerated operation speed as "diskless" mode. However, swap storage and the entire /var directory tree get mounted from a persistent storage device (two newly created partitions). The directory /var holds e.g. all log files, mailspools, databases, etc., as well as lbu backup commits and the package cache. This mode is useful for having RAM accelerated servers with variable amounts of user-data that exceed the available RAM size. It enables the entire current system state (not just the boot state) to survive a system crash in accordance with the particular filesystem guarantees.

[FIXME-2]: Setup-alpine will create the data partition and mount it as /var, but setup-alpine's "data" disk mode can not yet configure lbu config storage settings automatically. The current workaround, is to select "none" at the 'where to store configs' prompt (as the new data partition is not listed anyway) and configure lbu manually after setup-alpine exits, and before rebooting:

  1. Identify the created data partition, e.g. /dev/sdXY, and its filesystemtype, e.g. using lsblk
  2. Manually edit the lbu backups location in /etc/lbu/lbu.conf and configure LBU_MEDIA=sdXY (according to the previous findings).
  3. Save the configuration on that partition for the next boot with lbu commit.
  4. If (a new) partition fails to get mounted, execute: mkdir /media/sdXY ; echo "/dev/sdXY /media/sdXY fstype noauto,rw 0 0" >> /etc/fstab, and try lbu commit again.

In data disk mode, the boot device may also remain the initial (and possibly read-only) installation media, or be copied to a partition (e.g. /dev/sdXY) with setup-bootable.

System Disk Mode

This is a traditional hard-disk install.

If this mode is selected, the setup-alpine script creates three partitions on the selected storage device, /boot, swap and / (the filesystem root). This mode may, for example, be used for generic desktop and development machines.

For custom partitioning, see Setting up disks manually.

To install along side another operating systems, see Dualbooting.

Preparing for the installation

Note: This "Additional Details" section needs to be consolidated with the work at https://docs.alpinelinux.org (not finished) (Restructuring things there, moving and linking from here or there?).

Verifying the downloaded image-file

Commands to verify the checksum and GPG signature of a downloaded image-file on different systems.
OS type SHA256 check SHA256 calculation (to be compared manually) GPG signature verification
Linux sha256sum -c alpine-*.iso.sha256 curl https://alpinelinux.org/keys/ncopa.asc | gpg --import ;

gpg --verify alpine-<version>.iso.asc alpine-<version>.iso

MACOS - ? - shasum -a 256 alpine-*.iso - ? -
OpenBSD sha256 -C alpine-*.sha256 alpine-*.iso doas pkg_add gnupg;

ftp -o - https://alpinelinux.org/keys/ncopa.asc | gpg --import ; gpg --verify alpine-<version>.iso.asc alpine-<version>.iso

FreeBSD - ? - /usr/local/bin/shasum -a 256 alpine-*.iso - ? -
NetBSD - ? - /usr/local/bin/shasum -a 256 alpine-*.iso - ? -
Windows - ? - certutil -hashfile alpine-*.iso SHA256 - ? -

Flashing (direct data writing) the installation image-file onto a device or media

Note: These instructions are exclusively for x86_64 and x86. For ARM boards, see Alpine on ARM#Preparing installation media.

Unix/Linux

Under Unix (and thus Linux), "everything is a file" and the data in the image-file can be written to a device or media with the dd command. Afterward, executing the eject command removes the target device from the system and ensures the write cache is completely flushed.

dd if=<iso-file-to-read-in> of=<target-device-node-to-write-out-to> bs=4M; eject <target-device-node-to-write-to>

Be careful to correctly identify the target device as any data on it will be lost! All connected "bulk storage devices" can be listed with lsblk and blkid.

# lsblk
NAME            MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINT
sdX               0:0    0  64,0G  0 disk  
├─sdX1            0:1    0     2G  0 part  
└─sdX2            0:2    0    30G  0 part  /mnt/sdX2

# blkid
/dev/sdX1: LABEL="some" UUID="..." TYPE="vfat"
/dev/sdX2: LABEL="other" UUID="..." TYPE="ext4"

For example, if /dev/sdX is the desired target device, first make sure you un-mount all mounted partitions of the target device. For example sdX1 and sdX2:

umount /dev/sdX1 /dev/sdX2


For dd's output-file (of=), however, do not specify a partition number. For example, write to sdX, not sdX1:

Warning: This will overwrite the target device /dev/sdX, so before executing, make sure you have a backup of the data if you can't afford to lose it.

dd if=~/Downloads/alpine-standard-3.00.0-x86_64.iso of=/dev/sdX bs=4M; eject /dev/sdX

Windows

For example, there is the Rufus program. Rufus will enable you to create bootable USB flash drives under Windows.

Rufus has been tested and works for Alpine Linux 3.12.x with the following settings:

  • Partition scheme: MBR
  • Target system: BIOS or UEFI
  • File system: FAT32
  • Cluster size: 4096 bytes (default)

Verifying the written installation media

After detaching and re-attaching the device, a bit-wise comparison can verify the data written to the device (instead of just data buffered in RAM). If the comparison terminates with an end-of-file error on the .iso file side, all the contents from the image have been written (and re-read) successfully:

# cmp ~/Downloads/alpine-standard-3.00.0-x86_64.iso /dev/sdX
cmp: EOF on alpine-standard-3.00.0-x86_64.iso

Booting from external devices

Insert the boot media to a proper drive or port of the computer and turn the machine on, or restart it, if already running.

If the computer does not automatically boot from the desired device, one needs to bring up the boot menu and choose the media to boot from. Depending on the computer, the menu may be accessed by repeatedly pressing a key quickly when booting starts. Some computers require that you press the button before starting the computer and hold it down while the computer boots. Typical keys are: F9-F12, sometimes F7 or F8. If these don't bring up the boot menu, it may be necessary to enter the BIOS configuration and adjust the boot settings, for which typical keys are: Del F1 F2 F6 or Esc.

Installation Step Details

Custom partitioning of the harddisk

It is possible to specify configurations for RAID, encryption, LVM, etc. as well as manual partitioning.

For "diskless" or "data disk" mode installs, manual partitioning may be needed to prepare the harddisk for committing local backups of the system state with lbu commit, to have a place for a package cache, or to use it for a /var mount.

For a "sys" install, custom partitioning is needed only if the desired scheme differs from overwriting an entire disk, or using the default set of a /boot, swap and root partition on the disk.

See Setting up disks manually for the alpine options for RAID, encryption, LVM, etc. and manual partitioning.

Questions asked by setup-alpine

Example setup-alpine session

The setup-alpine script offers the following configuration options:

  • Keyboard Layout (Local keyboard language and usage mode, e.g. us and variant of us-nodeadkeys.)
  • Hostname (The name for the computer.)
  • Network (For example, automatic IP address discovery with the "DHCP" protocol.)
  • DNS Servers (Domain Name Servers to query. If unsure, leave DNS domain name blank and using 9.9.9.9 2620:fe::fe for DNS is typically adequate.)
  • Root password (the password used to login to the root account)
  • Timezone (Optionally display times/dates in your local time zone)
  • HTTP/FTP Proxy (Proxy server to use for accessing the web/ftp. Use "none" for direct connections to websites and FTP servers.)
  • Mirror (From where to download packages. Choose the organization you trust giving your usage patterns to.)
  • Setup a user (Setting up a regular user account)
  • SSH (Secure SHell remote access server. "OpenSSH" is part of the default install image. Use "none" to disable remote login, e.g. on laptops.)
  • Disk Mode (Select between diskless (disk="none"), "data" or "sys", as described above.)
Warning: The data on a chosen device will be overwritten!


  • NTP (Network Time Protocol client used for keeping the system clock in sync with a time server. Package "chrony" is part of the default install image.)

Preparing for the first boot

If setup-alpine has finished configuring the "sys" disk mode, the system should be ready to reboot right away (see next subsection).

If the new local system was configured to run in "diskless" or "data" mode, and you do not want keep booting from the initial (and possibly read-only) installation media, the boot system needs to be copied to another device or partition.

The target partition may be identified using lsblk (after installing it with apk add lsblk) and/or blkid, similar to previously identifying the initial installation media device.

The procedure to copy the boot system is explained at setup-bootable

Once everything is in place, save your customized configuration with lbu commit before rebooting.

Rebooting and testing the new system

First, remove the initial installation media from the boot drive, or detach it from the port it's connected to.

The system may now be power-cycled or rebooted to confirm everything is working correctly.

The relevant commands for this are poweroff or reboot.

Completing the installation

The installation script installs only the base operating system. No applications e.g. web server, mail server, desktop environment, or web browsers are installed.

Please look under Post-Installation below, for some common things to do after installation.

Further Installation Instructions

Note: Specific topics should be kept on separate, individually manageable topic-pages and only get listed with a direct reference (link) on this general page.

Installation

Also see other Installation Category pages.

Post-Installation






Broader Usage Guides

General Documentation

Tip: Alpine Linux packages stay close to the upstream design. Therefore, all upstream documentation about configuring a software package, as well as good configuration guides from other distributions that stay close to upstream, e.g. those in the ArchWiki, are to a large degree, also applicable to configuring the software on Alpine Linux, thus can be very useful.